These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1835734)

  • 1. Localization of ATPase activity in dendritic spines of the cerebral cortex.
    Cohen RS; Kriho V
    J Neurocytol; 1991 Sep; 20(9):703-15. PubMed ID: 1835734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme ultracytochemical demonstration of Ca(++)-ATPase in the rat cerebral cortex.
    Zinchuk VS; Tushevsky VF; Bulavka AV
    Folia Histochem Cytobiol; 1992; 30(1):13-6. PubMed ID: 1446775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe.
    Cohen RS; Chung SK; Pfaff DW
    Cell Mol Neurobiol; 1985 Sep; 5(3):271-84. PubMed ID: 4064076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemical localization of raf protein kinase in dendritic spines and spine apparatuses of the rat cerebral cortex.
    Mihály A; Oravecz T; Oláh Z; Rapp UR
    Brain Res; 1991 May; 547(2):309-14. PubMed ID: 1884206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-stimulated adenosine triphosphatases in synaptic membranes.
    Sorensen RG; Mahler HR
    J Neurochem; 1981 Dec; 37(6):1407-18. PubMed ID: 6120995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of altered vesicle transport in redistribution of Ca2+, Mg2+-ATPase in cholestatic rat liver.
    Song JY; Van Noorden CJ; Frederiks WM
    Histochem J; 1998 Dec; 30(12):909-16. PubMed ID: 10100733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine structural localization of potassium-stimulated rho nitrophenylphosphatase activity in denrites of the cerebral cortex.
    Broderson SH; Patton DL; Stahl WL
    J Cell Biol; 1978 May; 77(2):R13-7. PubMed ID: 206562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood-brain barrier Ca2+-ATPase cytochemistry: incubation media and fixation methods for differentiating Ca2+-specific ATPase from ecto-ATPase.
    Manoonkitiwongsa PS; Whitter EF; Chavez JN; Schultz RL
    Biotech Histochem; 2010 Aug; 85(4):257-68. PubMed ID: 19886754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecto-ATPase/phosphatase activity in the olfactory sensilla of the spiny lobster, Panulirus argus: localization and characterization.
    Gleeson RA; Trapido-Rosenthal HG; McDowell LM; Aldrich HC; Carr WE
    Cell Tissue Res; 1992 Sep; 269(3):439-45. PubMed ID: 1330315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific expression of inositol 1,4,5-trisphosphate 3-kinase in dendritic spines.
    Yamada M; Kakita A; Mizuguchi M; Rhee SG; Kim SU; Ikuta F
    Brain Res; 1993 Mar; 606(2):335-40. PubMed ID: 8387863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electron-cytochemical study of the localization and properties of ATPases in the isolated nuclei of rabbit skeletal muscle under normal conditions and in experimental muscular dystrophy].
    Silakova AI; Konoplitskaia OL; Sytnianskaia NP
    Tsitologiia; 1977 Mar; 19(3):381-4. PubMed ID: 142328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+- or Mg2+-stimulated ATPase activity in bullfrog spinal nerve: relation to Ca2+ requirements for fast axonal transport.
    Hammerschlag R; Bobinski JA
    J Neurochem; 1981 Mar; 36(3):1114-21. PubMed ID: 6162913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of optimal conditions for the electron-cytochemical detection of ATPase activity in isolated nuclei].
    Konoplytska OL; Sytnyanska NP
    Ukr Biokhim Zh; 1975; 47(6):769-75. PubMed ID: 836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport.
    Fleschner CR; Kraus-Friedmann N
    Eur J Biochem; 1986 Jan; 154(2):313-20. PubMed ID: 2935394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochemical localization of Ca2+-Mg2+ adenosine triphosphatase in rat incisor ameloblasts during enamel secretion and maturation.
    Salama AH; Zaki AE; Eisenmann DR
    J Histochem Cytochem; 1987 Apr; 35(4):471-82. PubMed ID: 2950164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on an activator of the (Ca2+ plus Mg2+)-ATPase of human erythrocyte membranes.
    Luthra MG; Hildenbrandt GR; Hanahan DJ
    Biochim Biophys Acta; 1976 Jan; 419(1):164-79. PubMed ID: 1098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of calcium-activated and magnesium-activated ATPases of brain nerve endings.
    Lin SC; Way EL
    J Neurochem; 1984 Jun; 42(6):1697-706. PubMed ID: 6144728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of K(+)-dependent and K(+)-independent p-nitrophenylphosphatase activity of synaptosomes.
    Guerra Marichal M; Rodríguez del Castillo A; Martín Vasallo P; Battaner Arias E
    Neurochem Res; 1993 Jul; 18(7):751-8. PubMed ID: 8396213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of calcium antagonists on (Na+ + K+)-ATPase, Mg2+-ATPase and Ca2+-ATPase activities of rat cortical synaptosomes.
    Chiang DH; Wei JW
    Gen Pharmacol; 1987; 18(5):563-7. PubMed ID: 2820836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.