These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 18357562)
1. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. Yu HS; Jang JH; Kim TI; Lee HH; Kim HW J Biomed Mater Res A; 2009 Mar; 88(3):747-54. PubMed ID: 18357562 [TBL] [Abstract][Full Text] [Related]
2. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
3. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Lee HH; Yu HS; Jang JH; Kim HW Acta Biomater; 2008 May; 4(3):622-9. PubMed ID: 18171636 [TBL] [Abstract][Full Text] [Related]
4. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
5. Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix. Kim HW; Song JH; Kim HE J Biomed Mater Res A; 2006 Dec; 79(3):698-705. PubMed ID: 16850456 [TBL] [Abstract][Full Text] [Related]
6. An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Catledge SA; Clem WC; Shrikishen N; Chowdhury S; Stanishevsky AV; Koopman M; Vohra YK Biomed Mater; 2007 Jun; 2(2):142-50. PubMed ID: 18458448 [TBL] [Abstract][Full Text] [Related]
7. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Wutticharoenmongkol P; Pavasant P; Supaphol P Biomacromolecules; 2007 Aug; 8(8):2602-10. PubMed ID: 17655356 [TBL] [Abstract][Full Text] [Related]
8. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Venugopal J; Ma LL; Yong T; Ramakrishna S Cell Biol Int; 2005 Oct; 29(10):861-7. PubMed ID: 16153863 [TBL] [Abstract][Full Text] [Related]
9. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900 [TBL] [Abstract][Full Text] [Related]
10. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. Causa F; Netti PA; Ambrosio L; Ciapetti G; Baldini N; Pagani S; Martini D; Giunti A J Biomed Mater Res A; 2006 Jan; 76(1):151-62. PubMed ID: 16258959 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Zhang YZ; Venugopal J; Huang ZM; Lim CT; Ramakrishna S Biomacromolecules; 2005; 6(5):2583-9. PubMed ID: 16153095 [TBL] [Abstract][Full Text] [Related]
12. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
13. Nanofibrous membrane of collagen-polycaprolactone for cell growth and tissue regeneration. Lee JJ; Yu HS; Hong SJ; Jeong I; Jang JH; Kim HW J Mater Sci Mater Med; 2009 Sep; 20(9):1927-35. PubMed ID: 19365614 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro. Gauthaman K; Venugopal JR; Yee FC; Biswas A; Ramakrishna S; Bongso A Tissue Eng Part A; 2011 Jan; 17(1-2):71-81. PubMed ID: 20673136 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Wutticharoenmongkol P; Sanchavanakit N; Pavasant P; Supaphol P Macromol Biosci; 2006 Jan; 6(1):70-7. PubMed ID: 16374772 [TBL] [Abstract][Full Text] [Related]
16. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403 [TBL] [Abstract][Full Text] [Related]
17. Coaxially electrospun micro/nanofibrous poly(epsilon-caprolactone)/eggshell-protein scaffold. Kim GH; Min T; Park SA; Kim WD Bioinspir Biomim; 2008 Mar; 3():016006. PubMed ID: 18364565 [TBL] [Abstract][Full Text] [Related]
18. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027 [TBL] [Abstract][Full Text] [Related]
19. Bioactive and degradable hybridized nanofibers of gelatin-siloxane for bone regeneration. Song JH; Yoon BH; Kim HE; Kim HW J Biomed Mater Res A; 2008 Mar; 84(4):875-84. PubMed ID: 17647222 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a tissue-engineered membrane-cell construct for guided bone regeneration. Schantz JT; Hutmacher DW; Ng KW; Khor HL; Lim MT; Teoh SH Int J Oral Maxillofac Implants; 2002; 17(2):161-74. PubMed ID: 11958398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]