These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 18357978)
21. DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures. Tanaka H; Mori H; Seino H; Hidai M; Mizobe Y; Yoshizawa K J Am Chem Soc; 2008 Jul; 130(28):9037-47. PubMed ID: 18558678 [TBL] [Abstract][Full Text] [Related]
22. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Schrock RR Acc Chem Res; 2005 Dec; 38(12):955-62. PubMed ID: 16359167 [TBL] [Abstract][Full Text] [Related]
23. Synthesis of [(DPPNCH2CH2)3N]3- molybdenum complexes (DPP = 3,5-(2,5-Diisopropylpyrrolyl)2C6H3) and studies relevant to catalytic reduction of dinitrogen. Reithofer MR; Schrock RR; Müller P J Am Chem Soc; 2010 Jun; 132(24):8349-58. PubMed ID: 20499910 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of molybdenum complexes that contain "hybrid" triamidoamine ligands, [(hexaisopropylterphenyl-NCH2CH2)2NCH2CH2N-aryl]3-, and studies relevant to catalytic reduction of dinitrogen. Weare WW; Schrock RR; Hock AS; Müller P Inorg Chem; 2006 Nov; 45(23):9185-96. PubMed ID: 17083216 [TBL] [Abstract][Full Text] [Related]
25. Two-electron redox energetics in ligand-bridged dinuclear molybdenum and tungsten complexes. Lord RL; Schultz FA; Baik MH Inorg Chem; 2010 May; 49(10):4611-9. PubMed ID: 20405923 [TBL] [Abstract][Full Text] [Related]
26. Preparation, characterization, and reactivity of dinitrogen molybdenum complexes with bis(diphenylphosphino)amine derivative ligands that form a unique 4-membered P-N-P chelate ring. Ogawa T; Kajita Y; Wasada-Tsutsui Y; Wasada H; Masuda H Inorg Chem; 2013 Jan; 52(1):182-95. PubMed ID: 23231761 [TBL] [Abstract][Full Text] [Related]
27. Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water. Tanabe Y; Arashiba K; Nakajima K; Nishibayashi Y Chem Asian J; 2017 Oct; 12(19):2544-2548. PubMed ID: 28815926 [TBL] [Abstract][Full Text] [Related]
28. A quantum-chemical study of dinitrogen reduction at mononuclear iron-sulfur complexes with hints to the mechanism of nitrogenase. Reiher M; Hess BA Chemistry; 2002 Dec; 8(23):5332-9. PubMed ID: 12561304 [TBL] [Abstract][Full Text] [Related]
29. Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase. Kästner J; Hemmen S; Blöchl PE J Chem Phys; 2005 Aug; 123(7):074306. PubMed ID: 16229569 [TBL] [Abstract][Full Text] [Related]
30. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Arashiba K; Miyake Y; Nishibayashi Y Nat Chem; 2011 Feb; 3(2):120-5. PubMed ID: 21258384 [TBL] [Abstract][Full Text] [Related]
31. Electronic effects in oxo transfer reactions catalysed by salan molybdenum(VI) cis-dioxo complexes. Whiteoak CJ; Britovsek GJ; Gibson VC; White AJ Dalton Trans; 2009 Apr; (13):2337-44. PubMed ID: 19290366 [TBL] [Abstract][Full Text] [Related]
32. Free reaction enthalpy profile of the Schrock cycle derived from density functional theory calculations on the full [Mo(HIPT)N3N] catalyst. Thimm W; Gradert C; Broda H; Wennmohs F; Neese F; Tuczek F Inorg Chem; 2015 Oct; 54(19):9248-55. PubMed ID: 26107395 [TBL] [Abstract][Full Text] [Related]
33. A family of dioxo-molybdenum(VI) complexes of N2X heteroscorpionate ligands of relevance to molybdoenzymes. Hammes BS; Chohan BS; Hoffman JT; Einwächter S; Carrano CJ Inorg Chem; 2004 Nov; 43(24):7800-6. PubMed ID: 15554645 [TBL] [Abstract][Full Text] [Related]
34. Bonding and activation of N2 in Mo(0) complexes supported by hybrid tripod ligands with mixed dialkylphosphine/diarylphosphine donor groups: interplay of steric and electronic factors. Söncksen L; Gradert C; Krahmer J; Näther C; Tuczek F Inorg Chem; 2013 Jun; 52(11):6576-89. PubMed ID: 23697992 [TBL] [Abstract][Full Text] [Related]
35. Isomerization and oxygen atom transfer reactivity in oxo-Mo complexes of relevance to molybdoenzymes. Hoffman JT; Einwaechter S; Chohan BS; Basu P; Carrano CJ Inorg Chem; 2004 Nov; 43(24):7573-5. PubMed ID: 15554616 [TBL] [Abstract][Full Text] [Related]
36. Effect of the nature of the metal atom on hydrogen bonding and proton transfer to [Cp*MH3(dppe)]: tungsten versus molybdenum. Belkova NV; Besora M; Baya M; Dub PA; Epstein LM; Lledós A; Poli R; Revin PO; Shubina ES Chemistry; 2008; 14(32):9921-34. PubMed ID: 18810747 [TBL] [Abstract][Full Text] [Related]
37. Isolation, characterization of an intermediate in an oxygen atom-transfer reaction, and the determination of the bond dissociation energy. Nemykin VN; Laskin J; Basu P J Am Chem Soc; 2004 Jul; 126(28):8604-5. PubMed ID: 15250684 [TBL] [Abstract][Full Text] [Related]
38. Pi-donor/acceptor effect on Lindqvist type polyoxomolibdates because of various multiple-bonded nitrogenous ligands. Carey DM; Muñoz-Castro A; Bustos CJ; Manríquez JM; Arratia-Pérez R J Phys Chem A; 2007 Jul; 111(28):6563-7. PubMed ID: 17595070 [TBL] [Abstract][Full Text] [Related]
39. New insight into selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites: a theoretical study. Li J; Li S Phys Chem Chem Phys; 2007 Jul; 9(25):3304-11. PubMed ID: 17579740 [TBL] [Abstract][Full Text] [Related]