These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18358042)

  • 1. The Newman-Kwart rearrangement: a microwave kinetic study.
    Gilday JP; Lenden P; Moseley JD; Cox BG
    J Org Chem; 2008 Apr; 73(8):3130-4. PubMed ID: 18358042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecularity of the Newman-Kwart rearrangement.
    Burns M; Lloyd-Jones GC; Moseley JD; Renny JS
    J Org Chem; 2010 Oct; 75(19):6347-53. PubMed ID: 20812755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding microwave heating effects in single mode type cavities-theory and experiment.
    Robinson J; Kingman S; Irvine D; Licence P; Smith A; Dimitrakis G; Obermayer D; Kappe CO
    Phys Chem Chem Phys; 2010 May; 12(18):4750-8. PubMed ID: 20428555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical verification of nonthermal microwave effects on intramolecular reactions.
    Kanno M; Nakamura K; Kanai E; Hoki K; Kono H; Tanaka M
    J Phys Chem A; 2012 Mar; 116(9):2177-83. PubMed ID: 22332996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave heating of water, ice, and saline solution: molecular dynamics study.
    Tanaka M; Sato M
    J Chem Phys; 2007 Jan; 126(3):034509. PubMed ID: 17249886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of the Maillard reaction between metoclopramide hydrochloride and lactose.
    Qiu Z; Stowell JG; Morris KR; Byrn SR; Pinal R
    Int J Pharm; 2005 Oct; 303(1-2):20-30. PubMed ID: 16126356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient and chemoselective synthesis of N-substituted 2-aminopyridines via a microwave-assisted multicomponent reaction.
    Tu S; Jiang B; Zhang Y; Jia R; Zhang J; Yao C; Shi F
    Org Biomol Chem; 2007 Jan; 5(2):355-9. PubMed ID: 17205181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on kinetic model of microwave thermocatalytic treatment of biomass tar model compound.
    Anis S; Zainal ZA
    Bioresour Technol; 2014 Jan; 151():183-90. PubMed ID: 24231266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol.
    Bilecka I; Elser P; Niederberger M
    ACS Nano; 2009 Feb; 3(2):467-77. PubMed ID: 19236087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave synthesis of zeolites. 2. Effect of vessel size, precursor volume, and irradiation method.
    Panzarella B; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2007 Nov; 111(44):12657-67. PubMed ID: 17939703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desorption and re-adsorption of carbon nanotubes: comparisons of sodium hydroxide and microwave irradiation processes.
    Kuo CY
    J Hazard Mater; 2008 Apr; 152(3):949-54. PubMed ID: 17868992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data.
    Dokić J; Gothe M; Wirth J; Peters MV; Schwarz J; Hecht S; Saalfrank P
    J Phys Chem A; 2009 Jun; 113(24):6763-73. PubMed ID: 19453149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study.
    Haque E; Khan NA; Park JH; Jhung SH
    Chemistry; 2010 Jan; 16(3):1046-52. PubMed ID: 20014080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-free synthesis of functionalized flavones under microwave irradiation.
    Seijas JA; Vázquez-Tato MP; Carballido-Reboredo R
    J Org Chem; 2005 Apr; 70(7):2855-8. PubMed ID: 15787587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Newman-Kwart rearrangement of O-aryl thiocarbamates: substantial reduction in reaction temperatures through palladium catalysis.
    Harvey JN; Jover J; Lloyd-Jones GC; Moseley JD; Murray P; Renny JS
    Angew Chem Int Ed Engl; 2009; 48(41):7612-5. PubMed ID: 19746383
    [No Abstract]   [Full Text] [Related]  

  • 18. Application of microwave heating for the fast extraction of fat content from the poultry feeds.
    Mahesar SA; Sherazi ST; Abro K; Kandhro A; Bhanger MI; van de Voort FR; Sedman J
    Talanta; 2008 Jun; 75(5):1240-4. PubMed ID: 18585208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical model of manganese ion catalyzed microwave deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):49-54. PubMed ID: 17531149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.