These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18358325)

  • 1. Methods for handling multiple testing.
    Rice TK; Schork NJ; Rao DC
    Adv Genet; 2008; 60():293-308. PubMed ID: 18358325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of association methods for dense marker data.
    Bacanu SA; Nelson MR; Ehm MG
    Genet Epidemiol; 2008 Dec; 32(8):791-9. PubMed ID: 18551558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circumventing multiple testing: a multilocus Monte Carlo approach to testing for association.
    McIntyre LM; Martin ER; Simonsen KL; Kaplan NL
    Genet Epidemiol; 2000 Jul; 19(1):18-29. PubMed ID: 10861894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple testing in large-scale genetic studies.
    Bouaziz M; Jeanmougin M; Guedj M
    Methods Mol Biol; 2012; 888():213-33. PubMed ID: 22665284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On multiple-testing correction in genome-wide association studies.
    Moskvina V; Schmidt KM
    Genet Epidemiol; 2008 Sep; 32(6):567-73. PubMed ID: 18425821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic association study in psychiatry: analytical evaluation and a recommendation.
    Carey G
    Am J Med Genet; 1994 Dec; 54(4):311-7. PubMed ID: 7726202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal false discovery rate estimation methodology for genome-wide association studies.
    Forner K; Lamarine M; Guedj M; Dauvillier J; Wojcik J
    Hum Hered; 2008; 65(4):183-94. PubMed ID: 18073488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of influential genetic markers among a large number of candidates based on effect estimation rather than hypothesis testing: an approach for genome-wide association studies.
    Strömberg U; Björk J; Broberg K; Mertens F; Vineis P
    Epidemiology; 2008 Mar; 19(2):302-8. PubMed ID: 18300718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The problem of multiple testing and solutions for genome-wide studies].
    Gyorffy B; Gyorffy A; Tulassay Z
    Orv Hetil; 2005 Mar; 146(12):559-63. PubMed ID: 15853065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput.
    Chen X; Sullivan PF
    Pharmacogenomics J; 2003; 3(2):77-96. PubMed ID: 12746733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trade-off between false positives and false negatives in the linkage analysis of complex traits.
    Todorov AA; Rao DC
    Genet Epidemiol; 1997; 14(5):453-64. PubMed ID: 9358264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single, sequential, genome-wide test to identify simultaneously all promising areas in a linkage scan.
    Province MA
    Genet Epidemiol; 2000 Dec; 19(4):301-22. PubMed ID: 11108641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure.
    Teo YY
    Curr Opin Lipidol; 2008 Apr; 19(2):133-43. PubMed ID: 18388693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms.
    Gao X; Starmer J; Martin ER
    Genet Epidemiol; 2008 May; 32(4):361-9. PubMed ID: 18271029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient two-stage genome-wide association designs based on false positive report probabilities.
    Kraft P
    Pac Symp Biocomput; 2006; ():523-34. PubMed ID: 17094266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TaqMan method for SNP genotyping.
    Shen GQ; Abdullah KG; Wang QK
    Methods Mol Biol; 2009; 578():293-306. PubMed ID: 19768602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired performance of FDR-based strategies in whole-genome association studies when SNPs are excluded prior to the analysis.
    Marenne G; Dalmasso C; Perdry H; Génin E; Broët P
    Genet Epidemiol; 2009 Jan; 33(1):45-53. PubMed ID: 18618761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple testing and power calculations in genetic association studies.
    So HC; Sham PC
    Cold Spring Harb Protoc; 2011 Jan; 2011(1):pdb.top95. PubMed ID: 21205861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-wide scan maps a novel high myopia locus to 5p15.
    Lam CY; Tam PO; Fan DS; Fan BJ; Wang DY; Lee CW; Pang CP; Lam DS
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3768-78. PubMed ID: 18421076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of potential power gain with imputed genotypes in genome-wide association studies.
    Becker T; Flaquer A; Brockschmidt FF; Herold C; Steffens M
    Hum Hered; 2009; 68(1):23-34. PubMed ID: 19339783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.