These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 18358553)
1. Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. Russo A; Vettori L; Felici C; Fiaschi G; Morini S; Toffanin A J Biotechnol; 2008 Apr; 134(3-4):312-9. PubMed ID: 18358553 [TBL] [Abstract][Full Text] [Related]
2. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Baudoin E; Lerner A; Mirza MS; El Zemrany H; Prigent-Combaret C; Jurkevich E; Spaepen S; Vanderleyden J; Nazaret S; Okon Y; Moënne-Loccoz Y Res Microbiol; 2010 Apr; 161(3):219-26. PubMed ID: 20138146 [TBL] [Abstract][Full Text] [Related]
3. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A; Davies FT; Egilla JN; Fox TC; Estrada-Luna AA; Ferrera-Cerrato R Rev Latinoam Microbiol; 2002; 44(1):31-7. PubMed ID: 17061513 [TBL] [Abstract][Full Text] [Related]
4. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. Rodríguez-Salazar J; Suárez R; Caballero-Mellado J; Iturriaga G FEMS Microbiol Lett; 2009 Jul; 296(1):52-9. PubMed ID: 19459961 [TBL] [Abstract][Full Text] [Related]
5. Functioning of plant-bacterial associations under osmotic stress in vitro. Evseeva NV; Tkachenko OV; Denisova AY; Burygin GL; Veselov DS; Matora LY; Shchyogolev SY World J Microbiol Biotechnol; 2019 Nov; 35(12):195. PubMed ID: 31784916 [TBL] [Abstract][Full Text] [Related]
6. The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Li Q; Saleh-Lakha S; Glick BR Can J Microbiol; 2005 Jun; 51(6):511-4. PubMed ID: 16121231 [TBL] [Abstract][Full Text] [Related]
7. Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Herschkovitz Y; Lerner A; Davidov Y; Okon Y; Jurkevitch E Environ Microbiol; 2005 Nov; 7(11):1847-52. PubMed ID: 16232299 [TBL] [Abstract][Full Text] [Related]
8. In vitro propagation of fraser photinia using Azospirillum-mediated root development. Llorente BE; Larraburu EE Methods Mol Biol; 2013; 11013():245-58. PubMed ID: 23179704 [TBL] [Abstract][Full Text] [Related]
9. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Couillerot O; Combes-Meynet E; Pothier JF; Bellvert F; Challita E; Poirier MA; Rohr R; Comte G; Moënne-Loccoz Y; Prigent-Combaret C Microbiology (Reading); 2011 Jun; 157(Pt 6):1694-1705. PubMed ID: 21273247 [TBL] [Abstract][Full Text] [Related]
10. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis. Guerrero-Molina MF; Lovaisa NC; Salazar SM; Díaz-Ricci JC; Pedraza RO Plant Biol (Stuttg); 2014 Jul; 16(4):726-31. PubMed ID: 24148195 [TBL] [Abstract][Full Text] [Related]
12. Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Rothballer M; Schmid M; Fekete A; Hartmann A Environ Microbiol; 2005 Nov; 7(11):1839-46. PubMed ID: 16232298 [TBL] [Abstract][Full Text] [Related]
13. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245. Yegorenkova IV; Tregubova KV; Burygin GL; Matora LY; Ignatov VV Can J Microbiol; 2016 Mar; 62(3):279-85. PubMed ID: 26863134 [TBL] [Abstract][Full Text] [Related]
14. [Plasmid P85 from Azospirillum brasilense SP245: study of the circle of possible hosts and incompatibility with plasmids from Azospirillum brasilense SP7]. Katsy EI Mol Gen Mikrobiol Virusol; 1992; (9-10):8-10. PubMed ID: 1298886 [TBL] [Abstract][Full Text] [Related]
15. Expression of the ACC Deaminase Gene fromEnterobacter cloacae UW4 in Azospirillum brasilense. Holguin G; Glick BR Microb Ecol; 2001 Apr; 41(3):281-288. PubMed ID: 11391466 [TBL] [Abstract][Full Text] [Related]
17. [Participation of azospirillium polysaccharides in interaction with wheat root surface]. Fedonenko IuP; Egorenkova IV; Konnova SA; Ignatov VV Mikrobiologiia; 2001; 70(3):384-90. PubMed ID: 11450462 [TBL] [Abstract][Full Text] [Related]
18. TARGET OF RAPAMYCIN signaling plays a role in Arabidopsis growth promotion by Azospirillum brasilense Sp245. Méndez-Gómez M; Castro-Mercado E; Peña-Uribe CA; Reyes-de la Cruz H; López-Bucio J; García-Pineda E Plant Sci; 2020 Apr; 293():110416. PubMed ID: 32081264 [TBL] [Abstract][Full Text] [Related]
19. [Complementation analysis of mutants of the associative bacteria Azospirillum brasilense Sp245 and S27, defective in mobility and flagellation]. Kamneva AB; Katsy EI; Borisov IV; Shelud'ko AV; Panasenko VI Genetika; 2001 Feb; 37(2):190-6. PubMed ID: 11253425 [TBL] [Abstract][Full Text] [Related]
20. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3. Guerrero-Molina MF; Lovaisa NC; Salazar SM; Martínez-Zamora MG; Díaz-Ricci JC; Pedraza RO Plant Biol (Stuttg); 2015 May; 17(3):766-73. PubMed ID: 25280241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]