BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18358716)

  • 1. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies.
    Bai HJ; Zhang ZM; Yang GE; Li BZ
    Bioresour Technol; 2008 Nov; 99(16):7716-22. PubMed ID: 18358716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene.
    Wang CL; Lum AM; Ozuna SC; Clark DS; Keasling JD
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):425-30. PubMed ID: 11549014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation.
    Pagnanelli F; Cruz Viggi C; Toro L
    Bioresour Technol; 2010 May; 101(9):2981-7. PubMed ID: 20053554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides.
    Li X; Peng W; Jia Y; Lu L; Fan W
    Water Sci Technol; 2017 Jun; 75(11-12):2489-2498. PubMed ID: 28617267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies.
    Radhika V; Subramanian S; Natarajan KA
    Water Res; 2006 Nov; 40(19):3628-36. PubMed ID: 16904158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris.
    Bai HJ; Zhang ZM; Guo Y; Yang GE
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):142-6. PubMed ID: 19167198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coenzyme Q10 production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor.
    Yen HW; Shih TY
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):711-6. PubMed ID: 19153771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01.
    Su YQ; Zhao YJ; Zhang WJ; Chen GC; Qin H; Qiao DR; Chen YE; Cao Y
    Chemosphere; 2020 Mar; 243():125166. PubMed ID: 31756653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface.
    Wang CL; Maratukulam PD; Lum AM; Clark DS; Keasling JD
    Appl Environ Microbiol; 2000 Oct; 66(10):4497-502. PubMed ID: 11010904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitation of cadmium by Clostridium thermoaceticum.
    Cunningham DP; Lundie LL
    Appl Environ Microbiol; 1993 Jan; 59(1):7-14. PubMed ID: 8439169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.
    Li X; Peng W; Jia Y; Lu L; Fan W
    Chemosphere; 2016 Aug; 156():228-235. PubMed ID: 27179240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of copper and cadmium in packed bed columns with live immobilized fungal biomass of Phanerochaete chrysosporium.
    Pakshirajan K; Swaminathan T
    Appl Biochem Biotechnol; 2009 May; 157(2):159-73. PubMed ID: 18551254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate.
    Italiano F; Rinalducci S; Agostiano A; Zolla L; De Leo F; Ceci LR; Trotta M
    Biometals; 2012 Oct; 25(5):939-49. PubMed ID: 22661079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.
    El-Baz AF; Sorour NM; Shetaia YM
    J Basic Microbiol; 2016 May; 56(5):520-30. PubMed ID: 26467054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides.
    Curson AR; Rogers R; Todd JD; Brearley CA; Johnston AW
    Environ Microbiol; 2008 Mar; 10(3):757-67. PubMed ID: 18237308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07.
    Zamil SS; Choi MH; Song JH; Park H; Xu J; Chi KW; Yoon SC
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):531-44. PubMed ID: 18679675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Degradation of dichlorvos by Rhodobacter sphaeroides].
    Zhao K; Yu Y; Jiang D; Wang D; Li ZM; Huang GZ; Bai ZH
    Huan Jing Ke Xue; 2009 Apr; 30(4):1199-204. PubMed ID: 19545029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules.
    Yao L; Ye ZF; Tong MP; Lai P; Ni JR
    J Hazard Mater; 2009 Jun; 165(1-3):250-5. PubMed ID: 19013022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium biosorption by non-living aquatic macrophytes Egeria densa.
    Módenes AN; de Abreu Pietrobelli JM; Espinoza-Quiñones FR
    Water Sci Technol; 2009; 60(2):293-300. PubMed ID: 19633370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.
    Teemu H; Seppo S; Jussi M; Raija T; Kalle L
    Int J Food Microbiol; 2008 Jul; 125(2):170-5. PubMed ID: 18471917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.