BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18358716)

  • 21. Mechanisms of cadmium resistance in anaerobic bacterial enrichments degrading pentachlorophenol.
    Kamashwaran SR; Crawford DL
    Can J Microbiol; 2003 Jul; 49(7):418-24. PubMed ID: 14569282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium.
    Folgar S; Torres E; Pérez-Rama M; Cid A; Herrero C; Abalde J
    J Hazard Mater; 2009 Jun; 165(1-3):486-93. PubMed ID: 19022577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal accumulation in cell wall: a possible mechanism of cadmium resistance by Pseudomonas stutzeri.
    Deb S; Ahmed SF; Basu M
    Bull Environ Contam Toxicol; 2013 Mar; 90(3):323-8. PubMed ID: 23275974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on biosorption equilibrium and kinetics of Cd2+ by Streptomyces sp. K33 and HL-12.
    Yuan HP; Zhang JH; Lu ZM; Min H; Wu C
    J Hazard Mater; 2009 May; 164(2-3):423-31. PubMed ID: 18809250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides.
    Giotta L; Agostiano A; Italiano F; Milano F; Trotta M
    Chemosphere; 2006 Mar; 62(9):1490-9. PubMed ID: 16081134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Growth of phototrophic bacterium Rhodobacter sphaeroides and formation of carotenoids on mineral water "Dzhermuk"].
    Paronian AKh
    Mikrobiol Z; 2002; 64(2):28-35. PubMed ID: 12190021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Mo(VI) on phototrophic hydrogen production by Rhodobacter sphaeroides.
    Fang HH; Li RY; Zhang T
    Environ Technol; 2011; 32(11-12):1279-85. PubMed ID: 21970170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of the activation of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides by rat liver mitochondrial fraction.
    Yamanishi T; Kubota I; Tuboi S
    J Biochem; 1983 Jul; 94(1):181-8. PubMed ID: 6604727
    [No Abstract]   [Full Text] [Related]  

  • 30. Biotransformation of beta-amyrin acetate by Rhodobacter sphaeroides.
    Yang GE; Zhang Z; Bai H; Gong J; Wang Y; Li B; Li J
    J Biosci Bioeng; 2008 May; 105(5):558-61. PubMed ID: 18558349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor.
    González-Sánchez A; Revah S
    Water Sci Technol; 2009; 59(7):1415-21. PubMed ID: 19381008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light.
    Xing SF; Tian HF; Yan Z; Song C; Wang SG
    J Hazard Mater; 2023 Sep; 458():131937. PubMed ID: 37421856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of kinetic parameters in the biosorption of Cr (VI) on immobilized Bacillus cereus M(1)(16) in a continuous packed bed column reactor.
    Maiti SK; Bera D; Chattopadhyay P; Ray L
    Appl Biochem Biotechnol; 2009 Nov; 159(2):488-504. PubMed ID: 19333567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism.
    Xin B; Chen G; Zheng W
    Water Res; 2010 Jun; 44(12):3565-72. PubMed ID: 20421123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3613-23. PubMed ID: 23344997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli.
    Kao WC; Wu JY; Chang CC; Chang JS
    J Hazard Mater; 2009 Sep; 169(1-3):651-8. PubMed ID: 19398152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    BMC Microbiol; 2013 Jul; 13():161. PubMed ID: 23855952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Characteristics of biodegradation of triphenyltin by Rhodopseudomonos spheroids].
    Chen SN; Ye JS; Yin H; Peng H; Zhang N; He BY
    Huan Jing Ke Xue; 2011 Feb; 32(2):536-41. PubMed ID: 21528580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method.
    Kong B; Tang B; Liu X; Zeng X; Duan H; Luo S; Wei W
    J Hazard Mater; 2009 Aug; 167(1-3):455-60. PubMed ID: 19203834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics.
    Watanabe M; Kawahara K; Sasaki K; Noparatnaraporn N
    J Biosci Bioeng; 2003; 95(4):374-8. PubMed ID: 16233422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.