BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 18359116)

  • 1. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner.
    Moriwaki Y; Kim YJ; Ido Y; Misawa H; Kawashima K; Endo S; Takahashi R
    Neurosci Res; 2008 May; 61(1):43-8. PubMed ID: 18359116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.
    Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L
    Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail.
    Gould CM; Kannan N; Taylor SS; Newton AC
    J Biol Chem; 2009 Feb; 284(8):4921-35. PubMed ID: 19091746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system.
    Polier S; Samant RS; Clarke PA; Workman P; Prodromou C; Pearl LH
    Nat Chem Biol; 2013 May; 9(5):307-12. PubMed ID: 23502424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of stability of cyclin-dependent kinase CDK11p110 and a caspase-processed form, CDK11p46, by Hsp90.
    Mikolajczyk M; Nelson MA
    Biochem J; 2004 Dec; 384(Pt 3):461-7. PubMed ID: 15344906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gambogic acid, a natural product inhibitor of Hsp90.
    Davenport J; Manjarrez JR; Peterson L; Krumm B; Blagg BS; Matts RL
    J Nat Prod; 2011 May; 74(5):1085-92. PubMed ID: 21486005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Shock Protein 90 regulates the stability of c-Jun in HEK293 Cells.
    Lu C; Chen D; Zhang Z; Fang F; Wu Y; Luo L; Yin Z
    Mol Cells; 2007 Oct; 24(2):210-4. PubMed ID: 17978573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability.
    Beilina A; Van Der Brug M; Ahmad R; Kesavapany S; Miller DW; Petsko GA; Cookson MR
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5703-8. PubMed ID: 15824318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The double edge of the HSP90-CDC37 chaperone machinery: opposing determinants of kinase stability and activity.
    Xu W; Neckers L
    Future Oncol; 2012 Aug; 8(8):939-42. PubMed ID: 22894668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.
    Kane LA; Lazarou M; Fogel AI; Li Y; Yamano K; Sarraf SA; Banerjee S; Youle RJ
    J Cell Biol; 2014 Apr; 205(2):143-53. PubMed ID: 24751536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.
    Narendra DP; Jin SM; Tanaka A; Suen DF; Gautier CA; Shen J; Cookson MR; Youle RJ
    PLoS Biol; 2010 Jan; 8(1):e1000298. PubMed ID: 20126261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation.
    Xiong H; Wang D; Chen L; Choo YS; Ma H; Tang C; Xia K; Jiang W; Ronai Z; Zhuang X; Zhang Z
    J Clin Invest; 2009 Mar; 119(3):650-60. PubMed ID: 19229105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PINK1: Multiple mechanisms of neuroprotection.
    Lizama BN; Otero PA; Chu CT
    Int Rev Mov Disord; 2021; 2():193-219. PubMed ID: 36035617
    [No Abstract]   [Full Text] [Related]  

  • 14. Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases.
    Wang L; Bergkvist L; Kumar R; Winblad B; Pavlov PF
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mitochondrial Kinase PINK1 in Diabetic Kidney Disease.
    Huang C; Bian J; Cao Q; Chen XM; Pollock CA
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperones and Proteostasis: Role in Parkinson's Disease.
    Joshi N; Raveendran A; Nagotu S
    Diseases; 2020 Jun; 8(2):. PubMed ID: 32580484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1.
    Shin WH; Chung KC
    Cell Death Dis; 2020 Jun; 11(6):425. PubMed ID: 32513926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1.
    Liu Y; Lear TB; Verma M; Wang KZ; Otero PA; McKelvey AC; Dunn SR; Steer E; Bateman NW; Wu C; Jiang Y; Weathington NM; Rojas M; Chu CT; Chen BB; Mallampalli RK
    JCI Insight; 2020 Jun; 5(11):. PubMed ID: 32493843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic treatment with the complex I inhibitor MPP
    Verma M; Zhu J; Wang KZQ; Chu CT
    J Biol Chem; 2020 Jun; 295(23):7865-7876. PubMed ID: 32332095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic Potential of the Hsp90/Cdc37 Interaction in Neurodegenerative Diseases.
    Gracia L; Lora G; Blair LJ; Jinwal UK
    Front Neurosci; 2019; 13():1263. PubMed ID: 31824256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.