These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1835946)

  • 1. Multiple mechanisms regulate muscle fiber diversity.
    Gunning P; Hardeman E
    FASEB J; 1991 Dec; 5(15):3064-70. PubMed ID: 1835946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression of myosin genes in developing skeletal muscle in the mouse embryo.
    Lyons GE; Ontell M; Cox R; Sassoon D; Buckingham M
    J Cell Biol; 1990 Oct; 111(4):1465-76. PubMed ID: 2211821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile protein isoforms in muscle development.
    Bandman E
    Dev Biol; 1992 Dec; 154(2):273-83. PubMed ID: 1358730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene.
    DeNardi C; Ausoni S; Moretti P; Gorza L; Velleca M; Buckingham M; Schiaffino S
    J Cell Biol; 1993 Nov; 123(4):823-35. PubMed ID: 8227143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation.
    Sutherland CJ; Esser KA; Elsom VL; Gordon ML; Hardeman EC
    Dev Dyn; 1993 Jan; 196(1):25-36. PubMed ID: 8334297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of contractile protein gene expression in fetal murine crural muscles: emergence of muscle diversity.
    Ontell MP; Sopper MM; Lyons G; Buckingham M; Ontell M
    Dev Dyn; 1993 Nov; 198(3):203-13. PubMed ID: 8136524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers.
    Wang JH; Wang QJ; Wang C; Reinholt B; Grant AL; Gerrard DE; Kuang S
    Dev Biol; 2015 Jun; 402(1):72-80. PubMed ID: 25794679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the dystrophic phenotype after transient neonatal denervation: role of MHC isoforms.
    Ontell MP; Moschella MC; Schiaffino S; Butler-Browne G; Whalen R; Ontell M
    J Neurobiol; 1992 Aug; 23(6):751-65. PubMed ID: 1431844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of myosin expression in developing and regenerating extrafusal and intrafusal muscle fibers with special emphasis on the role of thyroid hormones.
    Soukup T; Jirmanová I
    Physiol Res; 2000; 49(6):617-33. PubMed ID: 11252527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins.
    Hastings KE; Emerson CP
    Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1553-7. PubMed ID: 6951196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle.
    Caiozzo VJ; Haddad F; Baker MJ; Herrick RE; Prietto N; Baldwin KM
    J Appl Physiol (1985); 1996 Jul; 81(1):123-32. PubMed ID: 8828654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specialized cranial muscles: how different are they from limb and abdominal muscles?
    Sciote JJ; Horton MJ; Rowlerson AM; Link J
    Cells Tissues Organs; 2003; 174(1-2):73-86. PubMed ID: 12784043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single muscle fiber properties in aging and disuse.
    Canepari M; Pellegrino MA; D'Antona G; Bottinelli R
    Scand J Med Sci Sports; 2010 Feb; 20(1):10-9. PubMed ID: 19843264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of vertebrate muscle differentiation by thyroid hormone: the role of the myoD gene family.
    Muscat GE; Downes M; Dowhan DH
    Bioessays; 1995 Mar; 17(3):211-8. PubMed ID: 7748175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development.
    Cho M; Webster SG; Blau HM
    J Cell Biol; 1993 May; 121(4):795-810. PubMed ID: 8491773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow myosin in developing rat skeletal muscle.
    Narusawa M; Fitzsimons RB; Izumo S; Nadal-Ginard B; Rubinstein NA; Kelly AM
    J Cell Biol; 1987 Mar; 104(3):447-59. PubMed ID: 3546335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle.
    Baldwin KM; Haddad F
    J Appl Physiol (1985); 2001 Jan; 90(1):345-57. PubMed ID: 11133928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two types of neonatal-to-adult fast myosin heavy chain transitions in rat hindlimb muscle fibers.
    Russell SD; Cambon NA; Whalen RG
    Dev Biol; 1993 Jun; 157(2):359-70. PubMed ID: 8500649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
    Prado LG; Makarenko I; Andresen C; Krüger M; Opitz CA; Linke WA
    J Gen Physiol; 2005 Nov; 126(5):461-80. PubMed ID: 16230467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated expression of myosin heavy chains, metabolic enzymes, and morphological features of porcine skeletal muscle fiber types.
    Quiroz-Rothe E; Rivero JL
    Microsc Res Tech; 2004 Sep; 65(1-2):43-61. PubMed ID: 15570587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.