BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18359531)

  • 21. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain.
    Tamakawa H; Ikushima S; Yoshida S
    J Biosci Bioeng; 2012 Jan; 113(1):73-5. PubMed ID: 21996028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.
    Su B; Wu M; Zhang Z; Lin J; Yang L
    Metab Eng; 2015 Sep; 31():112-22. PubMed ID: 26197036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis.
    Ko BS; Kim DM; Yoon BH; Bai S; Lee HY; Kim JH; Kim IC
    Biotechnol Lett; 2011 Jun; 33(6):1209-13. PubMed ID: 21331586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock.
    Dashtban M; Kepka G; Seiboth B; Qin W
    Appl Biochem Biotechnol; 2013 Jan; 169(2):554-69. PubMed ID: 23247825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05.
    Iverson A; Garza E; Zhao J; Wang Y; Zhao X; Wang J; Manow R; Zhou S
    World J Microbiol Biotechnol; 2013 Jul; 29(7):1225-32. PubMed ID: 23435875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL; Rao CV
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei.
    Hong Y; Dashtban M; Kepka G; Chen S; Qin W
    Biomed Res Int; 2014; 2014():169705. PubMed ID: 25013760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAD⁺-dependent xylitol dehydrogenase (xdhA) and L-arabitol-4-dehydrogenase (ladA) deletion mutants of Aspergillus oryzae for improved xylitol production.
    Mahmud A; Hattori K; Hongwen C; Kitamoto N; Suzuki T; Nakamura K; Takamizawa K
    Biotechnol Lett; 2013 May; 35(5):769-77. PubMed ID: 23436125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific expression patterns of xyl1, xyl2 and xyl3 in response to different sugars in Pichia stipitis.
    Han JH; Park JY; Kang HW; Choi GW; Chung BW; Min J
    J Microbiol Biotechnol; 2010 May; 20(5):946-9. PubMed ID: 20519920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xylitol production by a Pichia stipitis D-xylulokinase mutant.
    Jin YS; Cruz J; Jeffries TW
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):42-5. PubMed ID: 15635458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli.
    Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK
    Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Xylitol Production from Cornstalk Hydrolysate Using Engineered Escherichia coli Whole Cells.
    Chang Z; Liu D; Yang Z; Wu J; Zhuang W; Niu H; Ying H
    J Agric Food Chem; 2018 Dec; 66(50):13209-13216. PubMed ID: 30465421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.