These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18359772)

  • 1. Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants.
    Congdon EE; Kim S; Bonchak J; Songrug T; Matzavinos A; Kuret J
    J Biol Chem; 2008 May; 283(20):13806-16. PubMed ID: 18359772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudophosphorylation of tau protein directly modulates its aggregation kinetics.
    Chang E; Kim S; Schafer KN; Kuret J
    Biochim Biophys Acta; 2011 Feb; 1814(2):388-95. PubMed ID: 20974297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggers of full-length tau aggregation: a role for partially folded intermediates.
    Chirita CN; Congdon EE; Yin H; Kuret J
    Biochemistry; 2005 Apr; 44(15):5862-72. PubMed ID: 15823045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanine dye N744 inhibits tau fibrillization by blocking filament extension: implications for the treatment of tauopathic neurodegenerative diseases.
    Necula M; Chirita CN; Kuret J
    Biochemistry; 2005 Aug; 44(30):10227-37. PubMed ID: 16042400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for an intermediate in tau filament formation.
    Chirita CN; Kuret J
    Biochemistry; 2004 Feb; 43(6):1704-14. PubMed ID: 14769048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative characterization of heparin binding to Tau protein: implication for inducer-mediated Tau filament formation.
    Zhu HL; Fernández C; Fan JB; Shewmaker F; Chen J; Minton AP; Liang Y
    J Biol Chem; 2010 Feb; 285(6):3592-3599. PubMed ID: 19959468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potency of a tau fibrillization inhibitor is influenced by its aggregation state.
    Congdon EE; Necula M; Blackstone RD; Kuret J
    Arch Biochem Biophys; 2007 Sep; 465(1):127-35. PubMed ID: 17559794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of annealing and fragmentation in human tau aggregation dynamics.
    Huseby CJ; Bundschuh R; Kuret J
    J Biol Chem; 2019 Mar; 294(13):4728-4737. PubMed ID: 30745358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein anatomy: C-tail region of human tau protein as a crucial structural element in Alzheimer's paired helical filament formation in vitro.
    Yanagawa H; Chung SH; Ogawa Y; Sato K; Shibata-Seki T; Masai J; Ishiguro K
    Biochemistry; 1998 Feb; 37(7):1979-88. PubMed ID: 9485325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization.
    Xu LR; Liu XL; Chen J; Liang Y
    PLoS One; 2013; 8(10):e76657. PubMed ID: 24098548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps.
    Chang E; Kim S; Yin H; Nagaraja HN; Kuret J
    J Neurochem; 2008 Nov; 107(4):1113-23. PubMed ID: 18803694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating triggers and enhancers of tau fibrillization.
    Kuret J; Congdon EE; Li G; Yin H; Yu X; Zhong Q
    Microsc Res Tech; 2005 Jul; 67(3-4):141-55. PubMed ID: 16103995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation.
    Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation.
    Liu H; Zhong H; Liu X; Zhou S; Tan S; Liu H; Yao X
    ACS Chem Neurosci; 2019 Dec; 10(12):4810-4823. PubMed ID: 31661961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide-cross-linked tau and MAP2 homodimers readily promote microtubule assembly.
    Di Noto L; DeTure MA; Purich DL
    Mol Cell Biol Res Commun; 1999 Jul; 2(1):71-6. PubMed ID: 10527895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro.
    Necula M; Kuret J
    J Biol Chem; 2004 Nov; 279(48):49694-703. PubMed ID: 15364924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein.
    Okuyama K; Nishiura C; Mizushima F; Minoura K; Sumida M; Taniguchi T; Tomoo K; Ishida T
    FEBS J; 2008 Apr; 275(7):1529-1539. PubMed ID: 18312411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation analysis of the microtubule binding domain in tau protein by spectroscopic methods.
    Yao TM; Tomoo K; Ishida T; Hasegawa H; Sasaki M; Taniguchi T
    J Biochem; 2003 Jul; 134(1):91-9. PubMed ID: 12944375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions.
    Mukrasch MD; Biernat J; von Bergen M; Griesinger C; Mandelkow E; Zweckstetter M
    J Biol Chem; 2005 Jul; 280(26):24978-86. PubMed ID: 15855160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation.
    Eliezer D; Barré P; Kobaslija M; Chan D; Li X; Heend L
    Biochemistry; 2005 Jan; 44(3):1026-36. PubMed ID: 15654759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.