These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 18359772)
21. Characterization of two VQIXXK motifs for tau fibrillization in vitro. Li W; Lee VM Biochemistry; 2006 Dec; 45(51):15692-701. PubMed ID: 17176091 [TBL] [Abstract][Full Text] [Related]
22. Ligand-dependent inhibition and reversal of tau filament formation. Chirita C; Necula M; Kuret J Biochemistry; 2004 Mar; 43(10):2879-87. PubMed ID: 15005623 [TBL] [Abstract][Full Text] [Related]
23. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251 [TBL] [Abstract][Full Text] [Related]
24. Oxidized and phosphorylated synthetic peptides corresponding to the second and third tubulin-binding repeats of the tau protein reveal structural features of paired helical filament assembly. Hoffmann R; Dawson NF; Wade JD; Otvös L J Pept Res; 1997 Aug; 50(2):132-42. PubMed ID: 9273897 [TBL] [Abstract][Full Text] [Related]
25. The "jaws" of the tau-microtubule interaction. Mukrasch MD; von Bergen M; Biernat J; Fischer D; Griesinger C; Mandelkow E; Zweckstetter M J Biol Chem; 2007 Apr; 282(16):12230-9. PubMed ID: 17307736 [TBL] [Abstract][Full Text] [Related]
26. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. von Bergen M; Barghorn S; Müller SA; Pickhardt M; Biernat J; Mandelkow EM; Davies P; Aebi U; Mandelkow E Biochemistry; 2006 May; 45(20):6446-57. PubMed ID: 16700555 [TBL] [Abstract][Full Text] [Related]
27. A static laser light scattering assay for surfactant-induced tau fibrillization. Necula M; Kuret J Anal Biochem; 2004 Oct; 333(2):205-15. PubMed ID: 15450794 [TBL] [Abstract][Full Text] [Related]
28. Electron microscopy as a quantitative method for investigating tau fibrillization. Necula M; Kuret J Anal Biochem; 2004 Jun; 329(2):238-46. PubMed ID: 15158482 [TBL] [Abstract][Full Text] [Related]
29. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Jangholi A; Ashrafi-Kooshk MR; Arab SS; Riazi G; Mokhtari F; Poorebrahim M; Mahdiuni H; Kurganov BI; Moosavi-Movahedi AA; Khodarahmi R Arch Biochem Biophys; 2016 Nov; 609():1-19. PubMed ID: 27638048 [TBL] [Abstract][Full Text] [Related]
30. Tau glycation is involved in aggregation of the protein but not in the formation of filaments. Ledesma MD; Pérez M; Colaco C; Avila J Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1111-6. PubMed ID: 9846893 [TBL] [Abstract][Full Text] [Related]
31. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746 [TBL] [Abstract][Full Text] [Related]
32. Evidence for independent mechanisms and a multiple-hit model of tau assembly. DeTure M; Granger B; Grover A; Hutton M; Yen SH Biochem Biophys Res Commun; 2006 Jan; 339(3):858-64. PubMed ID: 16325769 [TBL] [Abstract][Full Text] [Related]
33. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411 [TBL] [Abstract][Full Text] [Related]
34. The microtubule-associated protein tau forms a triple-stranded left-hand helical polymer. Ruben GC; Iqbal K; Grundke-Iqbal I; Wisniewski HM; Ciardelli TL; Johnson JE J Biol Chem; 1991 Nov; 266(32):22019-27. PubMed ID: 1939223 [TBL] [Abstract][Full Text] [Related]
35. Fibers of tau fragments, but not full length tau, exhibit a cross beta-structure: implications for the formation of paired helical filaments. Giannetti AM; Lindwall G; Chau MF; Radeke MJ; Feinstein SC; Kohlstaedt LA Protein Sci; 2000 Dec; 9(12):2427-35. PubMed ID: 11206064 [TBL] [Abstract][Full Text] [Related]
36. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by Tau protein. Ramachandran G; Udgaonkar JB J Biol Chem; 2011 Nov; 286(45):38948-59. PubMed ID: 21931162 [TBL] [Abstract][Full Text] [Related]
37. Ordered Assembly of Tau Protein and Neurodegeneration. Goedert M; Spillantini MG Adv Exp Med Biol; 2019; 1184():3-21. PubMed ID: 32096024 [TBL] [Abstract][Full Text] [Related]
38. Site-specific pseudophosphorylation modulates the rate of tau filament dissociation. Necula M; Kuret J FEBS Lett; 2005 Feb; 579(6):1453-7. PubMed ID: 15733856 [TBL] [Abstract][Full Text] [Related]
39. Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation. Ackmann M; Wiech H; Mandelkow E J Biol Chem; 2000 Sep; 275(39):30335-43. PubMed ID: 10869348 [TBL] [Abstract][Full Text] [Related]
40. C-H ... π interplay between Ile308 and Tyr310 residues in the third repeat of microtubule binding domain is indispensable for self-assembly of three- and four-repeat tau. Sogawa K; Okuda R; In Y; Ishida T; Taniguchi T; Minoura K; Tomoo K J Biochem; 2012 Sep; 152(3):221-9. PubMed ID: 22659094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]