BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18359796)

  • 1. Dynamics of ligand rebinding to unfolded MbCO by guanidine HCl.
    Park J; Kim J; Lee T; Lim M
    Biophys J; 2008 Jun; 94(11):L84-6. PubMed ID: 18359796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of geminate rebinding of CO to cytochrome c in guanidine HCl probed by femtosecond vibrational spectroscopy.
    Kim J; Park J; Lee T; Pak Y; Lim M
    J Phys Chem B; 2013 May; 117(17):4934-44. PubMed ID: 23590118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of ultrafast rebinding of CO to carboxymethyl cytochrome c.
    Kim J; Park J; Lee T; Lim M
    J Phys Chem B; 2009 Jan; 113(1):260-6. PubMed ID: 19072185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusive dynamics on multidimensional rough free energy surfaces.
    Banushkina P; Meuwly M
    J Chem Phys; 2007 Oct; 127(13):135101. PubMed ID: 17919054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic stabilization of myoglobin by subdenaturing concentrations of guanidine hydrochloride.
    Kumar R; Bhuyan AK
    J Biol Inorg Chem; 2009 Jan; 14(1):11-21. PubMed ID: 18752006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-energy barriers in MbCO rebinding.
    Banushkina P; Meuwly M
    J Phys Chem B; 2005 Sep; 109(35):16911-7. PubMed ID: 16853152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoexcitation dynamics of NO-bound ferric myoglobin investigated by femtosecond vibrational spectroscopy.
    Park J; Lee T; Park J; Lim M
    J Phys Chem B; 2013 Mar; 117(10):2850-63. PubMed ID: 23432208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities.
    Dantsker D; Roche C; Samuni U; Blouin G; Olson JS; Friedman JM
    J Biol Chem; 2005 Nov; 280(46):38740-55. PubMed ID: 16155005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of geminate rebinding of NO with cytochrome c in aqueous solution using femtosecond vibrational spectroscopy.
    Kim J; Park J; Lee T; Lim M
    J Phys Chem B; 2012 Nov; 116(46):13663-71. PubMed ID: 23113639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent studies of NO recombination to heme and heme proteins.
    Ionascu D; Gruia F; Ye X; Yu A; Rosca F; Beck C; Demidov A; Olson JS; Champion PM
    J Am Chem Soc; 2005 Dec; 127(48):16921-34. PubMed ID: 16316238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic, structural, and spectroscopic identification of geminate states of myoglobin: a ligand binding site on the reaction pathway.
    Powers L; Chance B; Chance M; Campbell B; Friedman J; Khalid S; Kumar C; Naqui A; Reddy KS; Zhou Y
    Biochemistry; 1987 Jul; 26(15):4785-96. PubMed ID: 3663626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin.
    Mourant JR; Braunstein DP; Chu K; Frauenfelder H; Nienhaus GU; Ormos P; Young RD
    Biophys J; 1993 Oct; 65(4):1496-507. PubMed ID: 8274643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain.
    Sugimoto T; Unno M; Shiro Y; Dou Y; Ikeda-Saito M
    Biophys J; 1998 Nov; 75(5):2188-94. PubMed ID: 9788913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of heme iron coordination and protein structure in the dynamics and geminate rebinding of nitric oxide to the H93G myoglobin mutant: implications for nitric oxide sensors.
    Negrerie M; Kruglik SG; Lambry JC; Vos MH; Martin JL; Franzen S
    J Biol Chem; 2006 Apr; 281(15):10389-98. PubMed ID: 16476730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximal and distal influences on ligand binding kinetics in microperoxidase and heme model compounds.
    Cao W; Ye X; Georgiev GY; Berezhna S; Sjodin T; Demidov AA; Wang W; Sage JT; Champion PM
    Biochemistry; 2004 Jun; 43(22):7017-27. PubMed ID: 15170339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the pathways for O2 entry into and exit from myoglobin.
    Scott EE; Gibson QH; Olson JS
    J Biol Chem; 2001 Feb; 276(7):5177-88. PubMed ID: 11018046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon monoxide binding properties of domain-swapped dimeric myoglobin.
    Nagao S; Ishikawa H; Yamada T; Mizutani Y; Hirota S
    J Biol Inorg Chem; 2015 Apr; 20(3):523-30. PubMed ID: 25578811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants.
    Gibson QH; Regan R; Elber R; Olson JS; Carver TE
    J Biol Chem; 1992 Nov; 267(31):22022-34. PubMed ID: 1429552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.