These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 18359798)
1. FtsZ bacterial cytoskeletal polymers on curved surfaces: the importance of lateral interactions. Hörger I; Velasco E; Rivas G; Vélez M; Tarazona P Biophys J; 2008 Jun; 94(11):L81-3. PubMed ID: 18359798 [TBL] [Abstract][Full Text] [Related]
2. Constricting force of filamentary protein rings evaluated from experimental results. Hörger I; Campelo F; Hernández-Machado A; Tarazona P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031922. PubMed ID: 20365785 [TBL] [Abstract][Full Text] [Related]
3. Estimating the bending modulus of a FtsZ bacterial-division protein filament. Cytrynbaum EN; Li YD; Allard JF; Mehrabian H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011902. PubMed ID: 22400586 [TBL] [Abstract][Full Text] [Related]
4. FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings. Housman M; Milam SL; Moore DA; Osawa M; Erickson HP Biochemistry; 2016 Jul; 55(29):4085-91. PubMed ID: 27368355 [TBL] [Abstract][Full Text] [Related]
5. A mechanical explanation for cytoskeletal rings and helices in bacteria. Andrews SS; Arkin AP Biophys J; 2007 Sep; 93(6):1872-84. PubMed ID: 17513368 [TBL] [Abstract][Full Text] [Related]
6. Torsion and curvature of FtsZ filaments. González de Prado Salas P; Hörger I; Martín-García F; Mendieta J; Alonso Á; Encinar M; Gómez-Puertas P; Vélez M; Tarazona P Soft Matter; 2014 Mar; 10(12):1977-86. PubMed ID: 24652404 [TBL] [Abstract][Full Text] [Related]
7. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ. Schumacher MA; Zeng W Proc Natl Acad Sci U S A; 2016 May; 113(18):4988-93. PubMed ID: 27091999 [TBL] [Abstract][Full Text] [Related]
8. Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division. Hörger I; Velasco E; Mingorance J; Rivas G; Tarazona P; Vélez M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011902. PubMed ID: 18351871 [TBL] [Abstract][Full Text] [Related]
9. Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail. Huecas S; Ramírez-Aportela E; Vergoñós A; Núñez-Ramírez R; Llorca O; Díaz JF; Juan-Rodríguez D; Oliva MA; Castellen P; Andreu JM Biophys J; 2017 Oct; 113(8):1831-1844. PubMed ID: 29045877 [TBL] [Abstract][Full Text] [Related]
10. The straight and curved conformation of FtsZ protofilaments-evidence for rapid exchange of GTP into the curved protofilament. Lu C; Erickson HP Cell Struct Funct; 1999 Oct; 24(5):285-90. PubMed ID: 15216884 [TBL] [Abstract][Full Text] [Related]
11. Cell shape can mediate the spatial organization of the bacterial cytoskeleton. Wang S; Wingreen NS Biophys J; 2013 Feb; 104(3):541-52. PubMed ID: 23442905 [TBL] [Abstract][Full Text] [Related]
12. Polymorphism of FtsZ filaments on lipid surfaces: role of monomer orientation. Encinar M; Kralicek AV; Martos A; Krupka M; Cid S; Alonso A; Rico AI; Jiménez M; Vélez M Langmuir; 2013 Jul; 29(30):9436-46. PubMed ID: 23837832 [TBL] [Abstract][Full Text] [Related]
13. Surface Orientation and Binding Strength Modulate Shape of FtsZ on Lipid Surfaces. Márquez I; Díaz-Haro G; Vélez M Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137602 [TBL] [Abstract][Full Text] [Related]
14. FtsZ fiber bundling is triggered by a conformational change in bound GTP. Marrington R; Small E; Rodger A; Dafforn TR; Addinall SG J Biol Chem; 2004 Nov; 279(47):48821-9. PubMed ID: 15328358 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional structure of the Z-ring as a random network of FtsZ filaments. Piro O; Carmon G; Feingold M; Fishov I Environ Microbiol; 2013 Dec; 15(12):3252-8. PubMed ID: 23848262 [TBL] [Abstract][Full Text] [Related]
16. MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Dajkovic A; Lan G; Sun SX; Wirtz D; Lutkenhaus J Curr Biol; 2008 Feb; 18(4):235-44. PubMed ID: 18291654 [TBL] [Abstract][Full Text] [Related]
17. FtsZ condensates: an in vitro electron microscopy study. Popp D; Iwasa M; Narita A; Erickson HP; Maéda Y Biopolymers; 2009 May; 91(5):340-50. PubMed ID: 19137575 [TBL] [Abstract][Full Text] [Related]
18. Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures. Krupka M; Sobrinos-Sanguino M; Jiménez M; Rivas G; Margolin W mBio; 2018 Jun; 9(3):. PubMed ID: 29921670 [TBL] [Abstract][Full Text] [Related]
19. Effects of various kinetic rates of FtsZ filaments on bacterial cytokinesis. He Z; Liu Z; Guo K; Ding L Phys Chem Chem Phys; 2015 Dec; 17(47):31966-77. PubMed ID: 26567889 [TBL] [Abstract][Full Text] [Related]
20. Studies on the dissociation and urea-induced unfolding of FtsZ support the dimer nucleus polymerization mechanism. Montecinos-Franjola F; Ross JA; Sánchez SA; Brunet JE; Lagos R; Jameson DM; Monasterio O Biophys J; 2012 May; 102(9):2176-85. PubMed ID: 22824282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]