These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18359799)

  • 1. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral crystals in calcified tissues: a comparative study by SAXS.
    Fratzl P; Groschner M; Vogl G; Plenk H; Eschberger J; Fratzl-Zelman N; Koller K; Klaushofer K
    J Bone Miner Res; 1992 Mar; 7(3):329-34. PubMed ID: 1585835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone mineralization as studied by small-angle x-ray scattering.
    Fratzl P; Schreiber S; Klaushofer K
    Connect Tissue Res; 1996; 34(4):247-54. PubMed ID: 9084633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal-like hierarchical organization of bone begins at the nanoscale.
    Reznikov N; Bilton M; Lari L; Stevens MM; Kröger R
    Science; 2018 May; 360(6388):. PubMed ID: 29724924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering.
    Fratzl P; Schreiber S; Boyde A
    Calcif Tissue Int; 1996 May; 58(5):341-6. PubMed ID: 8661969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering.
    Fratzl P; Fratzl-Zelman N; Klaushofer K; Vogl G; Koller K
    Calcif Tissue Int; 1991 Jun; 48(6):407-13. PubMed ID: 2070275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
    Lee DD; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):247-57. PubMed ID: 2605949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.
    Dong XN; Guda T; Millwater HR; Wang X
    J Biomech; 2009 Feb; 42(3):202-9. PubMed ID: 19058806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy.
    Jiang H; Ramunno-Johnson D; Song C; Amirbekian B; Kohmura Y; Nishino Y; Takahashi Y; Ishikawa T; Miao J
    Phys Rev Lett; 2008 Jan; 100(3):038103. PubMed ID: 18233041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curved mineral platelets in bone.
    Schwarcz HP; Nassif N; Kis VK
    Acta Biomater; 2024 Jul; 183():201-209. PubMed ID: 38838906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling.
    Zhou HW; Burger C; Wang H; Hsiao BS; Chu B; Graham L
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):986-96. PubMed ID: 27599731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.