These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18359799)

  • 41. A 3D Model of the Effect of Tortuosity and Constrictivity on the Diffusion in Mineralized Collagen Fibril.
    Bini F; Pica A; Marinozzi A; Marinozzi F
    Sci Rep; 2019 Feb; 9(1):2658. PubMed ID: 30804401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new model to simulate the elastic properties of mineralized collagen fibril.
    Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC
    Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cooperative deformation of mineral and collagen in bone at the nanoscale.
    Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mineral structure and preferred orientation in the fin bones of the plaice, Pleuronectes platessa.
    Green M; Isaac DH; Jenkins GM
    Biomaterials; 1988 Jul; 9(4):319-23. PubMed ID: 2850826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phylogeny and chemistry of biological mineral transport.
    Schlesinger PH; Braddock DT; Larrouture QC; Ray EC; Riazanski V; Nelson DJ; Tourkova IL; Blair HC
    Bone; 2020 Dec; 141():115621. PubMed ID: 32858255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution large-area imaging of nanoscale structure and mineralization of a sclerosing osteosarcoma in human bone.
    Zanghellini B; Grünewald TA; Burghammer M; Rennhofer H; Liegl-Atzwanger B; Leithner A; Lichtenegger HC
    J Struct Biol; 2019 Jul; 207(1):56-66. PubMed ID: 31004766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.
    Shah FA; Zanghellini E; Matic A; Thomsen P; Palmquist A
    Calcif Tissue Int; 2016 Feb; 98(2):193-205. PubMed ID: 26472430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An investigation of the mineral in ductile and brittle cortical mouse bone.
    Rodriguez-Florez N; Garcia-Tunon E; Mukadam Q; Saiz E; Oldknow KJ; Farquharson C; Millán JL; Boyde A; Shefelbine SJ
    J Bone Miner Res; 2015 May; 30(5):786-95. PubMed ID: 25418329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy.
    Lees S; Prostak KS; Ingle VK; Kjoller K
    Calcif Tissue Int; 1994 Sep; 55(3):180-9. PubMed ID: 7987731
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations.
    Fratzl-Zelman N; Schmidt I; Roschger P; Glorieux FH; Klaushofer K; Fratzl P; Rauch F; Wagermaier W
    Bone; 2014 Mar; 60():122-8. PubMed ID: 24296239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanostructural analysis of trabecular bone.
    Hong SI; Hong SK; Kohn DH
    J Mater Sci Mater Med; 2009 Jul; 20(7):1419-26. PubMed ID: 19266266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The morphology of bone mineral as revealed by small-angle X-ray scattering.
    Matsushima N; Akiyama M; Terayama Y; Izumi Y; Miyake Y
    Biochim Biophys Acta; 1984 Sep; 801(2):298-305. PubMed ID: 6477966
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality.
    Niu LN; Jee SE; Jiao K; Tonggu L; Li M; Wang L; Yang YD; Bian JH; Breschi L; Jang SS; Chen JH; Pashley DH; Tay FR
    Nat Mater; 2017 Mar; 16(3):370-378. PubMed ID: 27820813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Nano Lett; 2011 Feb; 11(2):757-66. PubMed ID: 21207932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling of bending and torsional stiffnesses of bone at sub-microscale: Effect of curved mineral lamellae.
    Idkaidek A; Schwarcz H; Jasiuk I
    J Biomech; 2021 Jun; 123():110531. PubMed ID: 34051614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone.
    Sasaki N; Ikawa T; Fukuda A
    J Biomech; 1991; 24(1):57-61. PubMed ID: 1851177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium phosphate mineralization in bone tissues directly observed in aqueous liquid by atmospheric SEM (ASEM) without staining: microfluidics crystallization chamber and immuno-EM.
    Sato C; Yamazaki D; Sato M; Takeshima H; Memtily N; Hatano Y; Tsukuba T; Sakai E
    Sci Rep; 2019 May; 9(1):7352. PubMed ID: 31089159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.