These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18359799)

  • 61. The nano-morphological relationships between apatite crystals and collagen fibrils in ivory dentine.
    Jantou-Morris V; Horton MA; McComb DW
    Biomaterials; 2010 Jul; 31(19):5275-86. PubMed ID: 20381860
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim).
    Grabner B; Landis WJ; Roschger P; Rinnerthaler S; Peterlik H; Klaushofer K; Fratzl P
    Bone; 2001 Nov; 29(5):453-7. PubMed ID: 11704498
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Alterations in collagen and mineral nanostructure observed in osteoporosis and pharmaceutical treatments using simultaneous small- and wide-angle X-ray scattering.
    Acerbo AS; Kwaczala AT; Yang L; Judex S; Miller LM
    Calcif Tissue Int; 2014 Nov; 95(5):446-56. PubMed ID: 25190190
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
    Wang W; Elbanna A
    Bone; 2014 Nov; 68():20-31. PubMed ID: 25108082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering.
    Bünger MH; Oxlund H; Hansen TK; Sørensen S; Bibby BM; Thomsen JS; Langdahl BL; Besenbacher F; Pedersen JS; Birkedal H
    Calcif Tissue Int; 2010 Apr; 86(4):294-306. PubMed ID: 20221590
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Correlations between nanostructure and micromechanical properties of healing bone.
    Hoerth RM; Kerschnitzki M; Aido M; Schmidt I; Burghammer M; Duda GN; Fratzl P; Willie BM; Wagermaier W
    J Mech Behav Biomed Mater; 2018 Jan; 77():258-266. PubMed ID: 28957701
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons.
    Arsenault AL
    Bone Miner; 1989 May; 6(2):165-77. PubMed ID: 2765707
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mineralization of type I collagen.
    Lees S
    Biophys J; 2003 Jul; 85(1):204-7. PubMed ID: 12829476
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aspects of collagen mineralization in hard tissue formation.
    Wiesmann HP; Meyer U; Plate U; Höhling HJ
    Int Rev Cytol; 2005; 242():121-56. PubMed ID: 15598468
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Calcium concentration dependent collagen mineralization.
    Niu X; Fan R; Tian F; Guo X; Li P; Feng Q; Fan Y
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():137-143. PubMed ID: 28183590
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Strongly bound citrate stabilizes the apatite nanocrystals in bone.
    Hu YY; Rawal A; Schmidt-Rohr K
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22425-9. PubMed ID: 21127269
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone.
    Pang S; Schwarcz HP; Jasiuk I
    J Mech Behav Biomed Mater; 2021 Jan; 113():104132. PubMed ID: 33049620
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

  • 78. X-ray diffraction by collagen in the fully mineralized cortical bone of cow tibia.
    Lees S; Hukins DW
    Bone Miner; 1992 Apr; 17(1):59-63. PubMed ID: 1581706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering.
    Fratzl P; Paris O; Klaushofer K; Landis WJ
    J Clin Invest; 1996 Jan; 97(2):396-402. PubMed ID: 8567960
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques.
    Giri B; Almer JD; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2012 Oct; 14():101-12. PubMed ID: 22982959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.