These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18359839)

  • 1. Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth.
    Sienkiewicz-Porzucek A; Nunes-Nesi A; Sulpice R; Lisec J; Centeno DC; Carillo P; Leisse A; Urbanczyk-Wochniak E; Fernie AR
    Plant Physiol; 2008 May; 147(1):115-27. PubMed ID: 18359839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth.
    Sienkiewicz-Porzucek A; Sulpice R; Osorio S; Krahnert I; Leisse A; Urbanczyk-Wochniak E; Hodges M; Fernie AR; Nunes-Nesi A
    Mol Plant; 2010 Jan; 3(1):156-73. PubMed ID: 20035036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function.
    Nunes-Nesi A; Carrari F; Gibon Y; Sulpice R; Lytovchenko A; Fisahn J; Graham J; Ratcliffe RG; Sweetlove LJ; Fernie AR
    Plant J; 2007 Jun; 50(6):1093-106. PubMed ID: 17461782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth.
    Sulpice R; Sienkiewicz-Porzucek A; Osorio S; Krahnert I; Stitt M; Fernie AR; Nunes-Nesi A
    Amino Acids; 2010 Oct; 39(4):1055-66. PubMed ID: 20473773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense inhibition of the 2-oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant respiration and during leaf senescence and fruit maturation.
    Araújo WL; Tohge T; Osorio S; Lohse M; Balbo I; Krahnert I; Sienkiewicz-Porzucek A; Usadel B; Nunes-Nesi A; Fernie AR
    Plant Cell; 2012 Jun; 24(6):2328-51. PubMed ID: 22751214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced expression of succinyl-coenzyme A ligase can be compensated for by up-regulation of the gamma-aminobutyrate shunt in illuminated tomato leaves.
    Studart-Guimarães C; Fait A; Nunes-Nesi A; Carrari F; Usadel B; Fernie AR
    Plant Physiol; 2007 Nov; 145(3):626-39. PubMed ID: 17885090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line.
    Morgan MJ; Osorio S; Gehl B; Baxter CJ; Kruger NJ; Ratcliffe RG; Fernie AR; Sweetlove LJ
    Plant Physiol; 2013 Jan; 161(1):397-407. PubMed ID: 23166354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture.
    Araújo WL; Nunes-Nesi A; Osorio S; Usadel B; Fuentes D; Nagy R; Balbo I; Lehmann M; Studart-Witkowski C; Tohge T; Martinoia E; Jordana X; Damatta FM; Fernie AR
    Plant Cell; 2011 Feb; 23(2):600-27. PubMed ID: 21307286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.
    Urbanczyk-Wochniak E; Fernie AR
    J Exp Bot; 2005 Jan; 56(410):309-21. PubMed ID: 15596475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase.
    Martínez-Andújar C; Ghanem ME; Albacete A; Pérez-Alfocea F
    J Plant Physiol; 2013 May; 170(7):676-87. PubMed ID: 23394787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants.
    Nunes-Nesi A; Carrari F; Lytovchenko A; Smith AM; Loureiro ME; Ratcliffe RG; Sweetlove LJ; Fernie AR
    Plant Physiol; 2005 Feb; 137(2):611-22. PubMed ID: 15665243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation.
    Singh M; Singh VP; Prasad SM
    Plant Physiol Biochem; 2016 Dec; 109():72-83. PubMed ID: 27639963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development.
    Wang X; Peng F; Li M; Yang L; Li G
    J Plant Physiol; 2012 Aug; 169(12):1173-82. PubMed ID: 22727046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress.
    Shu S; Tang Y; Yuan Y; Sun J; Zhong M; Guo S
    Plant Physiol Biochem; 2016 Oct; 107():344-353. PubMed ID: 27362298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms.
    van der Merwe MJ; Osorio S; Moritz T; Nunes-Nesi A; Fernie AR
    Plant Physiol; 2009 Feb; 149(2):653-69. PubMed ID: 19028880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium.
    Debouba M; Gouia H; Valadier MH; Ghorbel MH; Suzuki A
    Plant Physiol Biochem; 2006; 44(5-6):409-19. PubMed ID: 16889971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism.
    Dutilleul C; Lelarge C; Prioul JL; De Paepe R; Foyer CH; Noctor G
    Plant Physiol; 2005 Sep; 139(1):64-78. PubMed ID: 16126851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation.
    Osorio S; Vallarino JG; Szecowka M; Ufaz S; Tzin V; Angelovici R; Galili G; Fernie AR
    Plant Physiol; 2013 Feb; 161(2):628-43. PubMed ID: 23250627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase.
    Lytovchenko A; Bieberich K; Willmitzer L; Fernie AR
    Planta; 2002 Sep; 215(5):802-11. PubMed ID: 12244446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous application of silicon and selenium improves the tolerance of tomato plants to calcium nitrate stress.
    Yang L; Han R; Duan Y; Li J; Gou T; Zhou J; Zhu H; Xu Z; Guo J; Gong H
    Plant Physiol Biochem; 2024 Feb; 207():108416. PubMed ID: 38354528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.