These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18360378)

  • 21. Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation.
    Harris J; Lu P; Larocque H; Xu Y; Chen L; Bao X
    Opt Express; 2013 Apr; 21(8):9996-10009. PubMed ID: 23609705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bent-fiber intermodal interference based dual-channel fiber optic refractometer.
    Zhang X; Peng W
    Opt Express; 2015 Mar; 23(6):7602-10. PubMed ID: 25837098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.
    Zhu S; Pang F; Huang S; Zou F; Guo Q; Wen J; Wang T
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber.
    Wu D; Zhu T; Wang GY; Fu JY; Lin XG; Gou GL
    Appl Opt; 2013 Apr; 52(12):2670-5. PubMed ID: 23669675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Hot-Polymer Fiber Fabry-Perot Interferometer Anemometer for Sensing Airflow.
    Lee CL; Liu KW; Luo SH; Wu MS; Ma CT
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet.
    Sun B; Wang Y; Qu J; Liao C; Yin G; He J; Zhou J; Tang J; Liu S; Li Z; Liu Y
    Opt Express; 2015 Feb; 23(3):1906-11. PubMed ID: 25836063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation.
    Fan YE; Zhu T; Shi L; Rao YJ
    Appl Opt; 2011 Aug; 50(23):4604-10. PubMed ID: 21833138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical sensing by differential thermal analysis with a digitally controlled fiber optic interferometer.
    Gonçalves LC; González-Aguilar G; Frazão O; Baptista JM; Jorge PA
    Rev Sci Instrum; 2013 Jan; 84(1):015002. PubMed ID: 23387682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabry⁻Perot Cavity Sensing Probe with High Thermal Stability for an Acoustic Sensor by Structure Compensation.
    Cheng J; Zhou Y; Zou X
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated-optical wavelength sensor with self-compensation of thermally induced phase shifts by use of a LiNbO3 unbalanced Mach-Zehnder interferometer.
    Grusemann U; Zeitner B; Rottschalk M; Ruske JP; Tünnermann A; Rasch A
    Appl Opt; 2002 Oct; 41(29):6211-9. PubMed ID: 12389991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical-fiber Fabry-Perot embedded sensor.
    Lee CE; Taylor HF; Markus AM; Udd E
    Opt Lett; 1989 Nov; 14(21):1225-7. PubMed ID: 19759642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quasi-distributed long-gauge fiber optic sensor system.
    Linec M; Donlagić D
    Opt Express; 2009 Jul; 17(14):11515-29. PubMed ID: 19582067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement.
    Wei T; Han Y; Li Y; Tsai HL; Xiao H
    Opt Express; 2008 Apr; 16(8):5764-9. PubMed ID: 18542685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber.
    Wu C; Fu HY; Qureshi KK; Guan BO; Tam HY
    Opt Lett; 2011 Feb; 36(3):412-4. PubMed ID: 21283207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.
    Twu RC; Wang JS
    Opt Lett; 2016 Apr; 41(7):1692-5. PubMed ID: 27192320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous measurement of thermo-optic and thermal expansion coefficients with a single arm double interferometer.
    Domenegueti JF; Andrade AA; Pilla V; Zilio SC
    Opt Express; 2017 Jan; 25(1):313-319. PubMed ID: 28085825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance fiber-optic temperature sensor using low-coherence interferometry.
    Choi HS; Taylor HF; Lee CE
    Opt Lett; 1997 Dec; 22(23):1814-6. PubMed ID: 18188375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer.
    Han C; Ding H; Lv F
    Sci Rep; 2014 Dec; 4():7504. PubMed ID: 25511687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A High Sensitivity Temperature Sensing Probe Based on Microfiber Fabry-Perot Interference.
    Li Z; Zhang Y; Ren C; Sui Z; Li J
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip.
    Chen Z; Xiong S; Gao S; Zhang H; Wan L; Huang X; Huang B; Feng Y; Liu W; Li Z
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29329221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.