These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18360476)

  • 1. Airborne polarized lidar detection of scattering layers in the ocean.
    Vasilkov AP; Goldin YA; Gureev BA; Hoge FE; Swift RN; Wright CW
    Appl Opt; 2001 Aug; 40(24):4353-64. PubMed ID: 18360476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne lidar detection of subsurface oceanic scattering layers.
    Hoge FE; Wright CW; Krabill WB; Buntzen RR; Gilbert GD; Swift RN; Yungel JK; Berry RE
    Appl Opt; 1988 Oct; 27(19):3969-77. PubMed ID: 20539503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar.
    Shangguan M; Liao Z; Guo Y; Lee Z
    Opt Express; 2023 Jul; 31(16):25398-25414. PubMed ID: 37710428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous sensing profiles of beam attenuation coefficient and volume scattering function at 180° using a single-photon underwater elastic-Raman lidar.
    Shangguan M; Liao Z; Guo Y
    Opt Express; 2024 Feb; 32(5):8189-8204. PubMed ID: 38439482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom.
    Collister BL; Zimmerman RC; Hill VJ; Sukenik CI; Balch WM
    Appl Opt; 2020 May; 59(15):4650-4662. PubMed ID: 32543574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oceanographic lidar profiles compared with estimates from in situ optical measurements.
    Lee JH; Churnside JH; Marchbanks RD; Donaghay PL; Sullivan JM
    Appl Opt; 2013 Feb; 52(4):786-94. PubMed ID: 23385921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight.
    Churnside JH; Tatarskii VV; Wilson JJ
    Appl Opt; 1998 May; 37(15):3105-12. PubMed ID: 18273257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements.
    Simon A; Shanmugam P
    Opt Express; 2013 Dec; 21(24):30082-106. PubMed ID: 24514558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative retrieval method for ocean attenuation profiles measured by airborne lidar.
    Liu H; Chen P; Mao Z; Pan D
    Appl Opt; 2020 Apr; 59(10):C42-C51. PubMed ID: 32400564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties.
    Zhou Y; Chen Y; Zhao H; Jamet C; Dionisi D; Chami M; Di Girolamo P; Churnside JH; Malinka A; Zhao H; Qiu D; Cui T; Liu Q; Chen Y; Phongphattarawat S; Wang N; Chen S; Chen P; Yao Z; Le C; Tao Y; Xu P; Wang X; Wang B; Chen F; Ye C; Zhang K; Liu C; Liu D
    Light Sci Appl; 2022 Sep; 11(1):261. PubMed ID: 36055999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water depth measurement using an airborne pulsed neon laser system.
    Hoge FE; Swift RN; Frederick EB
    Appl Opt; 1980 Mar; 19(6):871-83. PubMed ID: 20220950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution of doubly scattered polarized laser radiation in the focal plane of a lidar receiver.
    Griaznov V; Veselovskii I; Di Girolamo P; Korenskii M; Summa D
    Appl Opt; 2007 Sep; 46(27):6821-30. PubMed ID: 17882305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reexamination of depolarization in lidar measurements.
    Gimmestad GG
    Appl Opt; 2008 Jul; 47(21):3795-802. PubMed ID: 18641748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lidar multiple scattering: improvement of Bissonnette's paraxial approximation.
    Wiegner M; Echle G
    Appl Opt; 1993 Nov; 32(33):6789-803. PubMed ID: 20856532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne Lidar Measurements of a Smoke Plume Produced by a Controlled Burn of Crude Oil on the Ocean.
    Ross JL; Waggoner AP; Hobbs PV; Ferek RJ
    J Air Waste Manag Assoc; 1996 Apr; 46(4):327-334. PubMed ID: 28079483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolarization of polarized light caused by high altitude clouds. 2: Depolarization of lidar induced by water clouds.
    Sun YY; Li ZP
    Appl Opt; 1989 Sep; 28(17):3633-8. PubMed ID: 20555748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the air-water interface on hydrosol lidar operation.
    Kokhanenko GP; Krekova MM; Penner LE; Shamanaev VS
    Appl Opt; 2005 Jun; 44(17):3510-9. PubMed ID: 16007849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.