These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 1836050)

  • 1. The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts.
    Maeser S; Kahmann R
    Mol Gen Genet; 1991 Nov; 230(1-2):170-6. PubMed ID: 1836050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis.
    Kilby NJ; Davies GJ; Snaith MR
    Plant J; 1995 Nov; 8(5):637-52. PubMed ID: 8528276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase.
    Dale EC; Ow DW
    Gene; 1990 Jul; 91(1):79-85. PubMed ID: 2205542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes.
    Grønlund JT; Stemmer C; Lichota J; Merkle T; Grasser KD
    Plant Mol Biol; 2007 Mar; 63(4):545-56. PubMed ID: 17131098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells.
    Onouchi H; Yokoi K; Machida C; Matsuzaki H; Oshima Y; Matsuoka K; Nakamura K; Machida Y
    Nucleic Acids Res; 1991 Dec; 19(23):6373-8. PubMed ID: 1754373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific recombination by Gin of bacteriophage Mu: inversions and deletions.
    Plasterk RH; Ilmer TA; Van de Putte P
    Virology; 1983 May; 127(1):24-36. PubMed ID: 6305017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of the Gin recombination protein of Escherichia coli phage Mu and its host factor.
    Kanaar R; van de Putte P; Cozzarelli NR
    Biochim Biophys Acta; 1986 Mar; 866(2-3):170-7. PubMed ID: 3006776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants.
    Klippel A; Kanaar R; Kahmann R; Cozzarelli NR
    EMBO J; 1993 Mar; 12(3):1047-57. PubMed ID: 8384550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of unusual gin mutants.
    Klippel A; Cloppenborg K; Kahmann R
    EMBO J; 1988 Dec; 7(12):3983-9. PubMed ID: 2974801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange.
    Crisona NJ; Kanaar R; Gonzalez TN; Zechiedrich EL; Klippel A; Cozzarelli NR
    J Mol Biol; 1994 Oct; 243(3):437-57. PubMed ID: 7966272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin.
    Mertens G; Klippel A; Fuss H; Blöcker H; Frank R; Kahmann R
    EMBO J; 1988 Apr; 7(4):1219-27. PubMed ID: 3042381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap.
    Puchta H; Hohn B
    Nucleic Acids Res; 1991 May; 19(10):2693-700. PubMed ID: 2041745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gin mutants that can be suppressed by a Fis-independent mutation.
    Spaeny-Dekking L; Schlicher E; Franken K; van de Putte P; Goosen N
    J Bacteriol; 1995 Jan; 177(1):222-8. PubMed ID: 7798135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The recombinational enhancer for DNA inversion functions independent of its orientation as a consequence of dyad symmetry in the Fis-DNA complex.
    Kanaar R; van Hal JP; van de Putte P
    Nucleic Acids Res; 1989 Aug; 17(15):6043-53. PubMed ID: 2549506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9.
    Klippel A; Mertens G; Patschinsky T; Kahmann R
    EMBO J; 1988 Apr; 7(4):1229-37. PubMed ID: 3042382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome.
    Albert H; Dale EC; Lee E; Ow DW
    Plant J; 1995 Apr; 7(4):649-59. PubMed ID: 7742860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.
    Benjamin KR; Abola AP; Kanaar R; Cozzarelli NR
    J Mol Biol; 1996 Feb; 256(1):50-65. PubMed ID: 8609613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homologous recombination between plasmid DNA molecules in maize protoplasts.
    Lyznik LA; McGee JD; Tung PY; Bennetzen JL; Hodges TK
    Mol Gen Genet; 1991 Nov; 230(1-2):209-18. PubMed ID: 1745230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells.
    Houba-Hérin N; Domin M; Pédron J
    Plant J; 1994 Jul; 6(1):55-66. PubMed ID: 7920704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed recombination in the genome of transgenic tobacco.
    Odell J; Caimi P; Sauer B; Russell S
    Mol Gen Genet; 1990 Sep; 223(3):369-78. PubMed ID: 2176714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.