These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18360702)
1. Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation. Welch JE; Bengtson P; Svensson K; Wittrup A; Jenniskens GJ; Ten Dam GB; Van Kuppevelt TH; Belting M Int J Oncol; 2008 Apr; 32(4):749-56. PubMed ID: 18360702 [TBL] [Abstract][Full Text] [Related]
3. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Samal K; Zhao P; Kendzicky A; Yco LP; McClung H; Gerner E; Burns M; Bachmann AS; Sholler G Int J Cancer; 2013 Sep; 133(6):1323-33. PubMed ID: 23457004 [TBL] [Abstract][Full Text] [Related]
4. Hypoxia-mediated induction of the polyamine system provides opportunities for tumor growth inhibition by combined targeting of vascular endothelial growth factor and ornithine decarboxylase. Svensson KJ; Welch JE; Kucharzewska P; Bengtson P; Bjurberg M; Påhlman S; Ten Dam GB; Persson L; Belting M Cancer Res; 2008 Nov; 68(22):9291-301. PubMed ID: 19010902 [TBL] [Abstract][Full Text] [Related]
5. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells. Kucharzewska P; Welch JE; Svensson KJ; Belting M Exp Cell Res; 2010 Oct; 316(16):2683-91. PubMed ID: 20594968 [TBL] [Abstract][Full Text] [Related]
6. Tumor attenuation by combined heparan sulfate and polyamine depletion. Belting M; Borsig L; Fuster MM; Brown JR; Persson L; Fransson LA; Esko JD Proc Natl Acad Sci U S A; 2002 Jan; 99(1):371-6. PubMed ID: 11752393 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of Polyamine Uptake Potentiates the Anti-Proliferative Effect of Polyamine Synthesis Inhibition and Preserves the Contractile Phenotype of Vascular Smooth Muscle Cells. Grossi M; Phanstiel O; Rippe C; Swärd K; Alajbegovic A; Albinsson S; Forte A; Persson L; Hellstrand P; Nilsson BO J Cell Physiol; 2016 Jun; 231(6):1334-42. PubMed ID: 26529275 [TBL] [Abstract][Full Text] [Related]
8. Effect of polyamine depletion on cone photoreceptors of the developing rabbit retina. Withrow C; Ashraf S; O'Leary T; Johnson LR; Fitzgerald ME; Johnson DA Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):3081-90. PubMed ID: 12202533 [TBL] [Abstract][Full Text] [Related]
9. Induction of apoptotic cell death by putrescine. Takao K; Rickhag M; Hegardt C; Oredsson S; Persson L Int J Biochem Cell Biol; 2006; 38(4):621-8. PubMed ID: 16406751 [TBL] [Abstract][Full Text] [Related]
10. Polyamine-dependent alterations in the structure of microfilaments, Golgi apparatus, endoplasmic reticulum, and proteoglycan synthesis in BHK cells. Parkkinen JJ; Lammi MJ; Agren U; Tammi M; Keinänen TA; Hyvönen T; Eloranta TO J Cell Biochem; 1997 Aug; 66(2):165-74. PubMed ID: 9213218 [TBL] [Abstract][Full Text] [Related]
11. Opposing effects of suramin and DL-alpha-difluoromethylornithine on polyamine metabolism contribute to a synergistic action on B16 melanoma cell growth in vitro. Gritli-Linde A; Björkman U; Delle U; Hultborn R; Johansson BR; Nannmark U; Linde A Anticancer Res; 1998; 18(2A):863-70. PubMed ID: 9615733 [TBL] [Abstract][Full Text] [Related]
12. Revival of 2-(difluoromethyl)ornithine (DFMO), an inhibitor of polyamine biosynthesis, as a cancer chemopreventive agent. Raul F Biochem Soc Trans; 2007 Apr; 35(Pt 2):353-5. PubMed ID: 17371277 [TBL] [Abstract][Full Text] [Related]
13. Suramin selectively inhibits carcinoma cell growth that is dependent on extracellular polyamines. Sandgren S; Belting M Anticancer Res; 2003; 23(2B):1223-8. PubMed ID: 12820375 [TBL] [Abstract][Full Text] [Related]
14. Potentiation of naphthoxyloside cytotoxicity on human tumor cells by difluoromethylornithine and spermine-NONOate. Cheng F; Johnsson R; Nilsson J; Fransson LA; Ellervik U; Mani K Cancer Lett; 2009 Jan; 273(1):148-54. PubMed ID: 18783879 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of tumor growth and polyamine uptake by tetracyclic amidines bearing a putrescine moiety. Mens T; Tomasi S; Eifler-Lima VL; Uriac P; Huet J; Catros-Quemener V Anticancer Res; 1997; 17(6D):4327-32. PubMed ID: 9494528 [TBL] [Abstract][Full Text] [Related]
16. The gastrointestinal polyamine source depletion enhances DFMO induced polyamine depletion in MCF-7 human breast cancer cells in vivo. Levêque J; Burtin F; Catros-Quemener V; Havouis R; Moulinoux JP Anticancer Res; 1998; 18(4A):2663-8. PubMed ID: 9703925 [TBL] [Abstract][Full Text] [Related]
17. Proteoglycan involvement in polyamine uptake. Belting M; Persson S; Fransson LA Biochem J; 1999 Mar; 338 ( Pt 2)(Pt 2):317-23. PubMed ID: 10024506 [TBL] [Abstract][Full Text] [Related]
18. Effect of polyamine homologation on the transport and biological properties of heterocyclic amidines. Delcros JG; Tomasi S; Duhieu S; Foucault M; Martin B; Le Roch M; Eifler-Lima V; Renault J; Uriac P J Med Chem; 2006 Jan; 49(1):232-45. PubMed ID: 16392808 [TBL] [Abstract][Full Text] [Related]
19. Effects of alpha-difluoromethylornithine on the Fas expression and apoptosis in Hep-2 cells. Alvarez MG; Marty C; Mori G; Rivarola V Biocell; 2000 Dec; 24(3):213-6. PubMed ID: 11201656 [TBL] [Abstract][Full Text] [Related]
20. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues. Casero RA; Frydman B; Stewart TM; Woster PM Proc West Pharmacol Soc; 2005; 48():24-30. PubMed ID: 16416654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]