BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 18361687)

  • 1. Modeling transfer of Listeria monocytogenes from slicer to deli meat during mechanical slicing.
    Sheen S; Hwang CA
    Foodborne Pathog Dis; 2008 Apr; 5(2):135-46. PubMed ID: 18361687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling the cross-contamination of Escherichia coli O157:H7 on the surface of ready-to-eat meat product while slicing.
    Sheen S; Hwang CA
    Food Microbiol; 2010 Feb; 27(1):37-43. PubMed ID: 19913690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling surface transfer of Listeria monocytogenes on salami during slicing.
    Sheen S
    J Food Sci; 2008 Aug; 73(6):E304-11. PubMed ID: 19241551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling transfer of Listeria monocytogenes during slicing of 'gravad' salmon.
    Aarnisalo K; Sheen S; Raaska L; Tamplin M
    Int J Food Microbiol; 2007 Aug; 118(1):69-78. PubMed ID: 17651853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of bacterial stress and biofilm-forming ability on transfer of surface-dried Listeria monocytogenes during slicing of delicatessen meats.
    Keskinen LA; Todd EC; Ryser ET
    Int J Food Microbiol; 2008 Oct; 127(3):298-304. PubMed ID: 18755520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of Listeria monocytogenes during mechanical slicing of turkey breast, bologna, and salami.
    Vorst KL; Todd EC; Rysert ET
    J Food Prot; 2006 Mar; 69(3):619-26. PubMed ID: 16541694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-contamination between processing equipment and deli meats by Listeria monocytogenes.
    Lin CM; Takeuchi K; Zhang L; Dohm CB; Meyer JD; Hall PA; Doyle MP
    J Food Prot; 2006 Jan; 69(1):71-9. PubMed ID: 16416903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mechanical shear on the survival of Listeria monocytogenes on surfaces.
    Sheen S; Costa S; Cooke P
    J Food Sci; 2010 Aug; 75(6):E387-93. PubMed ID: 20722924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films.
    Ye M; Neetoo H; Chen H
    Food Microbiol; 2008 Apr; 25(2):260-8. PubMed ID: 18206768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures.
    Hwang CA; Tamplin ML
    J Food Sci; 2007 Sep; 72(7):M246-53. PubMed ID: 17995648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation for possible source(s) of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad.
    Gibbons IS; Adesiyun A; Seepersadsingh N; Rahaman S
    Food Microbiol; 2006 Jun; 23(4):359-66. PubMed ID: 16943025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shelf life evaluation for ready-to-eat sliced uncured turkey breast and cured ham under probable storage conditions based on Listeria monocytogenes and psychrotroph growth.
    Pal A; Labuza TP; Diez-Gonzalez F
    Int J Food Microbiol; 2008 Aug; 126(1-2):49-56. PubMed ID: 18544466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Listeria monocytogenes in different retail delicatessen meats during simulated home storage.
    Zhang L; Moosekian SR; Todd EC; Ryser ET
    J Food Prot; 2012 May; 75(5):896-905. PubMed ID: 22564939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive modelling of the recovery of Listeria monocytogenes on sliced cooked ham after high pressure processing.
    Koseki S; Mizuno Y; Yamamoto K
    Int J Food Microbiol; 2007 Nov; 119(3):300-7. PubMed ID: 17900728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of Listeria monocytogenes at 7 degrees C in commercial turkey breast, with or without antimicrobials, after simulated contamination for manufacturing, retail and consumer settings.
    Lianou A; Geornaras I; Kendall PA; Scanga JA; Sofos JN
    Food Microbiol; 2007 Aug; 24(5):433-43. PubMed ID: 17367676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of Listeria monocytogenes in 13 dried sausage processing plants and their products.
    Thévenot D; Delignette-Muller ML; Christieans S; Vernozy-Rozand C
    Int J Food Microbiol; 2005 Jun; 102(1):85-94. PubMed ID: 15925005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing gloves.
    Liu C; Su YC
    Int J Food Microbiol; 2006 Jul; 110(2):149-54. PubMed ID: 16690154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of Listeria monocytogenes in experimentally contaminated French sausages.
    Thévenot D; Delignette-Muller ML; Christieans S; Vernozy-Rozand C
    Int J Food Microbiol; 2005 May; 101(2):189-200. PubMed ID: 15862881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management of microbiological safety of ready-to-eat meat products by mathematical modelling: Listeria monocytogenes as an example.
    Carrasco E; Valero A; Pérez-Rodríguez F; García-Gimeno RM; Zurera G
    Int J Food Microbiol; 2007 Mar; 114(2):221-6. PubMed ID: 17140689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevalence and challenge tests of Listeria monocytogenes in Belgian produced and retailed mayonnaise-based deli-salads, cooked meat products and smoked fish between 2005 and 2007.
    Uyttendaele M; Busschaert P; Valero A; Geeraerd AH; Vermeulen A; Jacxsens L; Goh KK; De Loy A; Van Impe JF; Devlieghere F
    Int J Food Microbiol; 2009 Jul; 133(1-2):94-104. PubMed ID: 19515447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.