These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18361784)

  • 21. Exploring systems affected by the heat shock response in Plasmodium falciparum via protein association networks.
    Lilburn TG; Cai H; Gu J; Zhou Z; Wang Y
    Int J Comput Biol Drug Des; 2014; 7(4):369-83. PubMed ID: 25539848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress.
    Heermann R; Weber A; Mayer B; Ott M; Hauser E; Gabriel G; Pirch T; Jung K
    J Mol Biol; 2009 Feb; 386(1):134-48. PubMed ID: 19101563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assay of transcription antitermination by proteins of the CspA family.
    Phadtare S; Severinov K; Inouye M
    Methods Enzymol; 2003; 371():460-71. PubMed ID: 14712721
    [No Abstract]   [Full Text] [Related]  

  • 24. Global stability analysis and robust design of multi-time-scale biological networks under parametric uncertainties.
    Meyer-Baese A; Koshkouei AJ; Emmett MR; Goodall DP
    Neural Netw; 2009; 22(5-6):658-63. PubMed ID: 19632813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants of bistability in induction of the Escherichia coli lac operon.
    Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME
    IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.
    Egri-Nagy A; Nehaniv CL
    Artif Life; 2008; 14(3):299-312. PubMed ID: 18489252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation.
    Ratajczak E; Zietkiewicz S; Liberek K
    J Mol Biol; 2009 Feb; 386(1):178-89. PubMed ID: 19101567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal logic patterns for querying dynamic models of cellular interaction networks.
    Monteiro PT; Ropers D; Mateescu R; Freitas AT; de Jong H
    Bioinformatics; 2008 Aug; 24(16):i227-33. PubMed ID: 18689830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-multiparameter sensitivity measure for robustness analysis of complex biochemical networks.
    Maeda K; Kurata H
    J Theor Biol; 2011 Mar; 272(1):174-86. PubMed ID: 21163268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.
    Breitling R; Gilbert D; Heiner M; Orton R
    Brief Bioinform; 2008 Sep; 9(5):404-21. PubMed ID: 18573813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological design principles of complex feedback modules in the E. coli ammonia assimilation system.
    Masaki K; Maeda K; Kurata H
    Artif Life; 2012; 18(1):53-90. PubMed ID: 22035079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated analysis of the gene neighbouring impact on bacterial metabolic networks.
    Bordron P; Eveillard D; Rusu I
    IET Syst Biol; 2011 Jul; 5(4):261-8. PubMed ID: 21823757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reverse engineering of biological complexity.
    Csete ME; Doyle JC
    Science; 2002 Mar; 295(5560):1664-9. PubMed ID: 11872830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computing chemical organizations in biological networks.
    Centler F; Kaleta C; di Fenizio PS; Dittrich P
    Bioinformatics; 2008 Jul; 24(14):1611-8. PubMed ID: 18480100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein folding in Escherichia coli: the chaperonin GroE and its substrates.
    Masters M; Blakely G; Coulson A; McLennan N; Yerko V; Acord J
    Res Microbiol; 2009 May; 160(4):267-77. PubMed ID: 19393741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
    Hansen CH; Endres RG; Wingreen NS
    PLoS Comput Biol; 2008 Jan; 4(1):e1. PubMed ID: 18179279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catabolite repression in Escherichia coli- a comparison of modelling approaches.
    Kremling A; Kremling S; Bettenbrock K
    FEBS J; 2009 Jan; 276(2):594-602. PubMed ID: 19087189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mutation in the cspH-cspG gene cluster enhances expression of heat-shock proteins and SOS repair system of Escherichia coli].
    Verbenko VN; Kuznetsova LV; Luchkina LA; Klonov NV
    Genetika; 2009 Sep; 45(9):1194-202. PubMed ID: 19824539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robustness of the Drosophila segment polarity network to transient perturbations.
    Subramanian K; Gadgil C
    IET Syst Biol; 2010 Mar; 4(2):169-76. PubMed ID: 20232996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.