BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18361788)

  • 1. Formation of cardiac fibers in Matrigel matrix.
    Bakunts K; Gillum N; Karabekian Z; Sarvazyan N
    Biotechniques; 2008 Mar; 44(3):341-8. PubMed ID: 18361788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatiotemporal development of intercalated disk in three-dimensional engineered heart tissues based on collagen/matrigel matrix.
    Zhou J; Shu Y; Lü SH; Li JJ; Sun HY; Tang RY; Duan CM; Wang Y; Lin QX; Mou YC; Li X; Wang CY
    PLoS One; 2013; 8(11):e81420. PubMed ID: 24260578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of thin-layer matrigel-based constructs for three-dimensional cell culture.
    Ko KR; Tsai MC; Frampton JP
    Biotechnol Prog; 2019 Jan; 35(1):e2733. PubMed ID: 30315732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Single Contracting Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Matrigel Mattress Technique.
    Cadar AG; Feaster TK; Durbin MD; Hong CC
    Curr Protoc Stem Cell Biol; 2017 Aug; 42():4A.14.1-4A.14.7. PubMed ID: 28806851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a matrigel-collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture.
    Lam NT; Lam H; Sturdivant NM; Balachandran K
    Biomed Mater; 2017 Jul; 12(4):045013. PubMed ID: 28484097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of modular cardiac tissue constructs in a syngeneic rat model.
    Leung BM; Miyagi Y; Li RK; Sefton MV
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1247-58. PubMed ID: 23505249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating the healing process: three-dimensional culture of stem cells in Matrigel for tissue repair.
    Xu S; Zhao L; Li Y; Gu X; Liu Z; Han X; Li W; Ma W
    BMC Biotechnol; 2024 May; 24(1):36. PubMed ID: 38796454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native aortic valve derived extracellular matrix hydrogel for three dimensional culture analyses with improved biomimetic properties.
    Nehrenheim L; Raschke S; Stefanski A; Barth M; Isabel Selig J; Barbian A; Fernández-Colino A; Stühler K; Mela P; Albert A; Lichtenberg A; Akhyari P
    Biomed Mater; 2019 Apr; 14(3):035014. PubMed ID: 30769335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of transferrin and inhibin-like proteins in matrigel.
    Dirami G; Papadopoulos V; Kleinman HK; Defreese DC; Musto NA; Dym M
    In Vitro Cell Dev Biol Anim; 1995 Jun; 31(6):404-11. PubMed ID: 8589878
    [No Abstract]   [Full Text] [Related]  

  • 11. Engineering controllable architecture in matrigel for 3D cell alignment.
    Jang JM; Tran SH; Na SC; Jeon NL
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2183-8. PubMed ID: 25585718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning of matrigel to deposit a basal lamina-like nanofiber surface.
    de Guzman RC; Loeb JA; VandeVord PJ
    J Biomater Sci Polym Ed; 2010; 21(8-9):1081-101. PubMed ID: 20507710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic patterning for fabrication of contractile cardiac organoids.
    Khademhosseini A; Eng G; Yeh J; Kucharczyk PA; Langer R; Vunjak-Novakovic G; Radisic M
    Biomed Microdevices; 2007 Apr; 9(2):149-57. PubMed ID: 17146728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering.
    Crapo PM; Wang Y
    Acta Biomater; 2010 Jun; 6(6):2091-6. PubMed ID: 19887120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment.
    Kofidis T; Balsam L; de Bruin J; Robbins RC
    Med Eng Phys; 2004 Mar; 26(2):157-63. PubMed ID: 15036183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen I-matrigel scaffolds for enhanced Schwann cell survival and control of three-dimensional cell morphology.
    Dewitt DD; Kaszuba SN; Thompson DM; Stegemann JP
    Tissue Eng Part A; 2009 Oct; 15(10):2785-93. PubMed ID: 19231925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of renal cells into engineered renal tissues in collagen/Matrigel scaffold in vitro.
    Lü SH; Lin Q; Liu YN; Gao Q; Hao T; Wang Y; Zhou J; Wang H; Du Z; Wu J; Wang CY
    J Tissue Eng Regen Med; 2012 Nov; 6(10):786-92. PubMed ID: 22052853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical aspects of cardiac tissue engineering with electrical stimulation.
    Cannizzaro C; Tandon N; Figallo E; Park H; Gerecht S; Radisic M; Elvassore N; Vunjak-Novakovic G
    Methods Mol Med; 2007; 140():291-307. PubMed ID: 18085215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered cardiac tissues for in vitro assessment of contractile function and repair mechanisms.
    Kim DE; Lee EJ; Martens TP; Kara R; Chaudhry HW; Itescu S; Costa KD
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():849-52. PubMed ID: 17946863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.