These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18362978)

  • 21. Formation of organic acids from the gas-phase ozonolysis of terpinolene.
    Ma Y; Marston G
    Phys Chem Chem Phys; 2009 Jun; 11(21):4198-209. PubMed ID: 19458821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional acid formation from the gas-phase ozonolysis of beta-pinene.
    Ma Y; Marston G
    Phys Chem Chem Phys; 2008 Oct; 10(40):6115-26. PubMed ID: 18846301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gas-phase radical chemistry in the troposphere.
    Monks PS
    Chem Soc Rev; 2005 May; 34(5):376-95. PubMed ID: 15852151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic parameters for gas-phase reactions: experimental and theoretical challenges.
    Carl SA; Vereecken L; Peeters J
    Phys Chem Chem Phys; 2007 Aug; 9(31):4071-84. PubMed ID: 17687459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic nitrate formation in the radical-initiated oxidation of model aerosol particles in the presence of NOx.
    Renbaum LH; Smith GD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8040-7. PubMed ID: 19727511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pinic and pinonic acid formation in the reaction of ozone with alpha-pinene.
    Ma Y; Willcox TR; Russell AT; Marston G
    Chem Commun (Camb); 2007 Apr; (13):1328-30. PubMed ID: 17377671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photochemical reactions in the tropospheric aqueous phase and on particulate matter.
    Vione D; Maurino V; Minero C; Pelizzetti E; Harrison MA; Olariu RI; Arsene C
    Chem Soc Rev; 2006 May; 35(5):441-53. PubMed ID: 16636727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy.
    Maksymiuk CS; Gayahtri C; Gil RR; Donahue NM
    Phys Chem Chem Phys; 2009 Sep; 11(36):7810-8. PubMed ID: 19727487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation of oleic acid and oleic acid/sodium chloride(aq) mixture droplets with ozone: changes of hygroscopicity and role of secondary reactions.
    Hung HM; Ariya P
    J Phys Chem A; 2007 Feb; 111(4):620-32. PubMed ID: 17249752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.
    Iinuma Y; Böge O; Kahnt A; Herrmann H
    Phys Chem Chem Phys; 2009 Sep; 11(36):7985-97. PubMed ID: 19727505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ozonolysis of organic compounds and mixtures in solution. Part I: Oleic, maleic, nonanoic and benzoic acids.
    Last DJ; Nájera JJ; Wamsley R; Hilton G; McGillen M; Percival CJ; Horn AB
    Phys Chem Chem Phys; 2009 Mar; 11(9):1427-40. PubMed ID: 19224044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
    Heine N; Houle FA; Wilson KR
    Environ Sci Technol; 2017 Dec; 51(23):13740-13748. PubMed ID: 29120614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A larger pool of ozone-forming carbon compounds in urban atmospheres.
    Lewis AC; Carslaw N; Marriott PJ; Kinghorn RM; Morrison P; Lee AL; Bartle KD; Pilling MJ
    Nature; 2000 Jun; 405(6788):778-81. PubMed ID: 10866195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides.
    Anglada JM; Solé A
    Phys Chem Chem Phys; 2016 Jun; 18(26):17698-712. PubMed ID: 27308802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous chemistry in the atmosphere of Mars.
    Lefèvre F; Bertaux JL; Clancy RT; Encrenaz T; Fast K; Forget F; Lebonnois S; Montmessin F; Perrier S
    Nature; 2008 Aug; 454(7207):971-5. PubMed ID: 18719584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary Organic Aerosol Formation from Aromatic Alkene Ozonolysis: Influence of the Precursor Structure on Yield, Chemical Composition, and Mechanism.
    Chiappini L; Perraudin E; Maurin N; Picquet-Varrault B; Zheng W; Marchand N; Temime-Roussel B; Monod A; Le Person A; Bernard F; Eyglunent G; Mellouki A; Doussin JF
    J Phys Chem A; 2019 Feb; 123(7):1469-1484. PubMed ID: 30626185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation.
    Docherty KS; Ziemann PJ
    J Phys Chem A; 2006 Mar; 110(10):3567-77. PubMed ID: 16526637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles.
    Karagulian F; Scott Lea A; Dilbeck CW; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2008 Jan; 10(4):528-41. PubMed ID: 18183314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.