BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18363056)

  • 1. Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data.
    Wu G; Nie L; Zhang W
    Curr Microbiol; 2008 Jul; 57(1):18-22. PubMed ID: 18363056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast.
    Ringnér M; Krogh M
    PLoS Comput Biol; 2005 Dec; 1(7):e72. PubMed ID: 16355254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis.
    Nie L; Wu G; Zhang W
    Genetics; 2006 Dec; 174(4):2229-43. PubMed ID: 17028312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.
    Weinberg DE; Shah P; Eichhorn SW; Hussmann JA; Plotkin JB; Bartel DP
    Cell Rep; 2016 Feb; 14(7):1787-1799. PubMed ID: 26876183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence That Base-pairing Interaction between Intron and mRNA Leader Sequences Inhibits Initiation of HAC1 mRNA Translation in Yeast.
    Sathe L; Bolinger C; Mannan MA; Dever TE; Dey M
    J Biol Chem; 2015 Sep; 290(36):21821-32. PubMed ID: 26175153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Analysis of Transcriptomic and Proteomic Datasets Reveals Information on Protein Expressivity and Factors Affecting Translational Efficiency.
    Wang J; Wu G; Chen L; Zhang W
    Methods Mol Biol; 2016; 1375():123-36. PubMed ID: 25762301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale.
    Beyer A; Hollunder J; Nasheuer HP; Wilhelm T
    Mol Cell Proteomics; 2004 Nov; 3(11):1083-92. PubMed ID: 15326222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae.
    Dever TE; Kinzy TG; Pavitt GD
    Genetics; 2016 May; 203(1):65-107. PubMed ID: 27183566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast.
    Lahtvee PJ; Sánchez BJ; Smialowska A; Kasvandik S; Elsemman IE; Gatto F; Nielsen J
    Cell Syst; 2017 May; 4(5):495-504.e5. PubMed ID: 28365149
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Cheng J; Maier KC; Avsec Ž; Rus P; Gagneur J
    RNA; 2017 Nov; 23(11):1648-1659. PubMed ID: 28802259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae.
    Friberg M; von Rohr P; Gonnet G
    Yeast; 2004 Oct; 21(13):1083-93. PubMed ID: 15484285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Codon stabilization coefficient as a metric to gain insights into mRNA stability and codon bias and their relationships with translation.
    Carneiro RL; Requião RD; Rossetto S; Domitrovic T; Palhano FL
    Nucleic Acids Res; 2019 Mar; 47(5):2216-2228. PubMed ID: 30698781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.
    Kahali B; Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2007 Mar; 354(3):693-9. PubMed ID: 17258174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of upstream open reading frames (uORF) in the 5' untranslated regions (UTR) of genes in Saccharomyces cerevisiae.
    Zhang Z; Dietrich FS
    Curr Genet; 2005 Aug; 48(2):77-87. PubMed ID: 16012843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast.
    Inada T; Aiba H
    EMBO J; 2005 Apr; 24(8):1584-95. PubMed ID: 15933721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stm1 modulates mRNA decay and Dhh1 function in Saccharomyces cerevisiae.
    Balagopal V; Parker R
    Genetics; 2009 Jan; 181(1):93-103. PubMed ID: 19015546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5'TRU: identification and analysis of translationally regulative 5'untranslated regions in amino acid starved yeast cells.
    Rachfall N; Heinemeyer I; Morgenstern B; Valerius O; Braus GH
    Mol Cell Proteomics; 2011 Jun; 10(6):M110.003350. PubMed ID: 21444828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling.
    Kasari V; Pochopien AA; Margus T; Murina V; Turnbull K; Zhou Y; Nissan T; Graf M; Nováček J; Atkinson GC; Johansson MJO; Wilson DN; Hauryliuk V
    Nucleic Acids Res; 2019 Sep; 47(16):8807-8820. PubMed ID: 31299085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.