BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18363145)

  • 21. Theoretical analysis of release kinetics of coated tablets containing constant and non-constant drug reservoirs.
    Zhou Y; Chu JS; Li JX; Wu XY
    Int J Pharm; 2010 Jan; 385(1-2):98-103. PubMed ID: 19879936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of internal and receptor pH on the rate of drug release from water-in-oil emulsions.
    Fujihira A; Shimizu N
    Chem Pharm Bull (Tokyo); 2014; 62(1):64-71. PubMed ID: 24390494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling.
    Hombreiro-Pérez M; Siepmann J; Zinutti C; Lamprecht A; Ubrich N; Hoffman M; Bodmeier R; Maincent P
    J Control Release; 2003 Mar; 88(3):413-28. PubMed ID: 12644367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-emulsifying pellets: relations between kinetic parameters of drug release and emulsion reconstitution-influence of formulation variables.
    Nikolakakis I; Malamataris S
    J Pharm Sci; 2014 May; 103(5):1453-65. PubMed ID: 24596121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prolonged naproxen joint residence time after intra-articular injection of lipophilic solutions comprising a naproxen glycolamide ester prodrug in the rat.
    Thing M; Lu Y; Agårdh L; Larsen C; Ostergaard J; He W; Wu W; Larsen F; Larsen SW
    Int J Pharm; 2013 Jul; 451(1-2):34-40. PubMed ID: 23624087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.
    Meeus J; Lenaerts M; Scurr DJ; Amssoms K; Davies MC; Roberts CJ; Van Den Mooter G
    J Pharm Sci; 2015 Apr; 104(4):1451-60. PubMed ID: 25648704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride.
    Baviskar D; Sharma R; Jain D
    Pak J Pharm Sci; 2013 Jan; 26(1):137-44. PubMed ID: 23261739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zero-order release of poorly water-soluble drug from polymeric films made via aqueous slurry casting.
    Zhang L; Alfano J; Race D; Davé RN
    Eur J Pharm Sci; 2018 May; 117():245-254. PubMed ID: 29499350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotating dialysis cell as in vitro release method for oily parenteral depot solutions.
    Schultz K; Møllgaard B; Frokjaer S; Larsen C
    Int J Pharm; 1997 Nov; 157(2):163-169. PubMed ID: 10477813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of organogels as oral controlled release formulations of hydrophilic drugs.
    Iwanaga K; Kawai M; Miyazaki M; Kakemi M
    Int J Pharm; 2012 Oct; 436(1-2):869-72. PubMed ID: 22766444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of a novel phospholipid-based depot injectable technology for poorly water-soluble drugs.
    Tiemessen H; van Hoogevest P; Leigh ML
    Eur J Pharm Biopharm; 2004 Nov; 58(3):587-93. PubMed ID: 15451533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oil and drug control the release rate from lyotropic liquid crystals.
    Martiel I; Baumann N; Vallooran JJ; Bergfreund J; Sagalowicz L; Mezzenga R
    J Control Release; 2015 Apr; 204():78-84. PubMed ID: 25744826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vehicle-dependent in situ modification of membrane-controlled drug release.
    Imanidis G; Helbing-Strausak S; Imboden R; Leuenberger H
    J Control Release; 1998 Jan; 51(1):23-34. PubMed ID: 9685901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The use of natural and synthetic hydrophilic polymers in the formulation of metformin hydrochloride tablets with different profile release].
    Kołodziejczyk MK; Kołodziejska J; Zgoda MM
    Polim Med; 2012; 42(3-4):167-84. PubMed ID: 23457958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo release kinetics of octreotide acetate from experimental polymeric microsphere formulations using oil/water and oil/oil processes.
    Murty SB; Wei Q; Thanoo BC; DeLuca PP
    AAPS PharmSciTech; 2004 Sep; 5(3):e49. PubMed ID: 15760082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin.
    Turner S; Federici C; Hite M; Fassihi R
    Drug Dev Ind Pharm; 2004 Sep; 30(8):797-807. PubMed ID: 15521326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low molecular weight heparin loaded pH-sensitive microparticles.
    Meissner Y; Ubrich N; Ghazouani FE; Maincent P; Lamprecht A
    Int J Pharm; 2007 Apr; 335(1-2):147-153. PubMed ID: 17150317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption.
    Shi Y; Gao P; Gong Y; Ping H
    Mol Pharm; 2010 Oct; 7(5):1458-65. PubMed ID: 20704265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices.
    Ghori MU; Ginting G; Smith AM; Conway BR
    Int J Pharm; 2014 Apr; 465(1-2):405-12. PubMed ID: 24560637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current approaches for in vitro drug release study of long acting parenteral formulations.
    Dadhaniya TM; Sharma OP; Gohel MC; Mehta PJ
    Curr Drug Deliv; 2015; 12(3):256-70. PubMed ID: 25666683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.