BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18363145)

  • 41. Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.
    Larsen DH; Fredholt K; Larsen C
    Eur J Pharm Sci; 2000 Sep; 11(3):223-9. PubMed ID: 11042228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies.
    Kantarci G; Ozgüney I; Karasulu HY; Arzik S; Güneri T
    AAPS PharmSciTech; 2007 Nov; 8(4):E91. PubMed ID: 18181551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled release matrix tablets of glipizide: Influence of different grades of ethocel and Co-excipient on drug release.
    Mehsud SU; Khan GM; Hussain A; Akram M; Akhlaq M; Khan KA; Shakoor A
    Pak J Pharm Sci; 2016 May; 29(3):779-87. PubMed ID: 27166548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro/in vivo characterization of a tramadol HCl depot system composed of monoolein and water.
    Malonne H; Fontaine J; Moës A
    Biol Pharm Bull; 2000 May; 23(5):627-31. PubMed ID: 10823677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suitability of Gelucire 50/13 for controlled release formulation of salbutamol sulphate.
    Mohsin S; Rahman NU; Idrees MA; Sarfraz MK; Khan MK; Mustafa G
    Pak J Pharm Sci; 2012 Jan; 25(1):35-41. PubMed ID: 22186307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro and in vivo characteristics of celecoxib in situ formed suspensions for intra-articular administration.
    Larsen SW; Frost AB; Ostergaard J; Thomsen MH; Jacobsen S; Skonberg C; Hansen SH; Jensen HE; Larsen C
    J Pharm Sci; 2011 Oct; 100(10):4330-7. PubMed ID: 21598256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.
    Sakai K; Obata K; Yoshikawa M; Takano R; Shibata M; Maeda H; Mizutani A; Terada K
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1254-61. PubMed ID: 22339057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The "inverted cup" -- a novel in vitro release technique for drugs in lipid formulations.
    Söderberg L; Dyhre H; Roth B; Björkman S
    J Control Release; 2006 Jun; 113(1):80-8. PubMed ID: 16697069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes.
    Xu X; Khan MA; Burgess DJ
    Int J Pharm; 2012 Apr; 426(1-2):211-218. PubMed ID: 22301423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs.
    Chavanpatil MD; Khdair A; Patil Y; Handa H; Mao G; Panyam J
    J Pharm Sci; 2007 Dec; 96(12):3379-89. PubMed ID: 17721942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro release testing methods for vitamin E nanoemulsions.
    Morais JM; Burgess DJ
    Int J Pharm; 2014 Nov; 475(1-2):393-400. PubMed ID: 25178829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of starch Pickering emulsions for potential applications in topical formulations.
    Marku D; Wahlgren M; Rayner M; Sjöö M; Timgren A
    Int J Pharm; 2012 May; 428(1-2):1-7. PubMed ID: 22366058
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A pharmacoscintigraphic study of three time-delayed capsule formulations in healthy male volunteers.
    McConville JT; Hodges LA; Jones T; Band JP; O'Mahony B; Lindsay B; Ross AC; Florence AJ; Stanley AJ; Humphrey MJ; Wilson CG; Stevens HN
    J Pharm Sci; 2009 Nov; 98(11):4251-63. PubMed ID: 19387976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel in vitro release method for submicron sized dispersed systems.
    Chidambaram N; Burgess DJ
    AAPS PharmSci; 1999; 1(3):E11. PubMed ID: 11741207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulating drug release profiles by lipid semi solid matrix formulations for BCS class II drug--an in vitro and an in vivo study.
    M K; Sistla R; Shastri NR
    Drug Deliv; 2015 May; 22(3):418-26. PubMed ID: 24471823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multivariate statistical approach to optimizing sustained-release tablet formulations containing diltiazem hydrochloride as a model highly water-soluble drug.
    Kikuchi S; Takayama K
    Int J Pharm; 2010 Feb; 386(1-2):149-55. PubMed ID: 19922778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins.
    Peng K; Tomatsu I; Kros A
    J Control Release; 2011 Nov; 152 Suppl 1():e72-4. PubMed ID: 22195937
    [No Abstract]   [Full Text] [Related]  

  • 58. Formulation development and investigation of ibuprofen controlled release tablets with hydrophilic polymers and the effect of co-excipients on drug release patterns.
    Jan SU; Khan GM; Hussain I
    Pak J Pharm Sci; 2012 Oct; 25(4):751-6. PubMed ID: 23009990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport characteristics in a novel in vitro release model for testing the performance of intra-articular injectables.
    Mertz N; Østergaard J; Yaghmur A; Larsen SW
    Int J Pharm; 2019 Jul; 566():445-453. PubMed ID: 31170479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release.
    Lu Y; Yu Y; Tang X
    J Pharm Sci; 2007 Dec; 96(12):3252-62. PubMed ID: 17721936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.