BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18363337)

  • 1. Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a microfluidic device.
    Yasukawa T; Nagamine K; Horiguchi Y; Shiku H; Koide M; Itayama T; Shiraishi F; Matsue T
    Anal Chem; 2008 May; 80(10):3722-7. PubMed ID: 18363337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes.
    Ino K; Kitagawa Y; Watanabe T; Shiku H; Koide M; Itayama T; Yasukawa T; Matsue T
    Electrophoresis; 2009 Oct; 30(19):3406-12. PubMed ID: 19802852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrapment and measurement of a biologically functionalized microbead with a microwell electrode.
    Chang CY; Takahashi Y; Murata T; Shiku H; Chang HC; Matsue T
    Lab Chip; 2009 May; 9(9):1185-92. PubMed ID: 19370235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of enzyme activity in single cells by voltammetry using a microcell with a positionable dual electrode.
    Gao N; Zhao M; Zhang X; Jin W
    Anal Chem; 2006 Jan; 78(1):231-8. PubMed ID: 16383332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization.
    Zhang H; Mitrovski SM; Nuzzo RG
    Anal Chem; 2007 Dec; 79(23):9014-21. PubMed ID: 17973402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical characterization of enzymatic activity of yeast cells entrapped in a poly(dimethylsiloxane) microwell on the basis of limited diffusion system.
    Shiku H; Goto S; Jung S; Nagamine K; Koide M; Itayama T; Yasukawa T; Matsue T
    Analyst; 2009 Jan; 134(1):182-7. PubMed ID: 19082191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-based single cell analysis of reporter gene expression in yeast two-hybrid systems.
    Whitaker RD; Walt DR
    Anal Biochem; 2007 Jan; 360(1):63-74. PubMed ID: 17113561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical detection of xenoestrogenic and antiestrogenic compounds using a yeast two-hybrid-17-beta-estradiol system.
    Schwartz-Mittelman A; Baruch A; Neufeld T; Buchner V; Rishpon J
    Bioelectrochemistry; 2005 Feb; 65(2):149-56. PubMed ID: 15713566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical single-cell gene-expression assay combining dielectrophoretic manipulation with secreted alkaline phosphatase reporter system.
    Murata T; Yasukawa T; Shiku H; Matsue T
    Biosens Bioelectron; 2009 Dec; 25(4):913-9. PubMed ID: 19775881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells.
    Amatore C; Arbault S; Chen Y; Crozatier C; Tapsoba I
    Lab Chip; 2007 Feb; 7(2):233-8. PubMed ID: 17268626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bead-based electrochemical immunoassay for bacteriophage MS2.
    Thomas JH; Kim SK; Hesketh PJ; Halsall HB; Heineman WR
    Anal Chem; 2004 May; 76(10):2700-7. PubMed ID: 15144178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated cell manipulation system--CMOS/microfluidic hybrid.
    Lee H; Liu Y; Ham D; Westervelt RM
    Lab Chip; 2007 Mar; 7(3):331-7. PubMed ID: 17330164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries.
    Campbell LC; Wilkinson MJ; Manz A; Camilleri P; Humphreys CJ
    Lab Chip; 2004 Jun; 4(3):225-9. PubMed ID: 15159783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel multi-depth microfluidic chip for single cell analysis.
    Yue S; Xue-Feng Y
    J Chromatogr A; 2006 Jun; 1117(2):228-33. PubMed ID: 16620849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical pumping system for on-chip gradient generation.
    Xie J; Miao Y; Shih J; He Q; Liu J; Tai YC; Lee TD
    Anal Chem; 2004 Jul; 76(13):3756-63. PubMed ID: 15228351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions.
    Nashida N; Satoh W; Fukuda J; Suzuki H
    Biosens Bioelectron; 2007 Jun; 22(12):3167-73. PubMed ID: 17383171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.