These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18363339)

  • 1. A Pneumocystis carinii group I intron-derived ribozyme utilizes an endogenous guanosine as the first reaction step nucleophile in the trans excision-splicing reaction.
    Dotson PP; Sinha J; Testa SM
    Biochemistry; 2008 Apr; 47(16):4780-7. PubMed ID: 18363339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction.
    Dotson PP; Sinha J; Testa SM
    FEBS J; 2008 Jun; 275(12):3110-22. PubMed ID: 18479464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs.
    Johnson AK; Sinha J; Testa SM
    Biochemistry; 2005 Aug; 44(31):10702-10. PubMed ID: 16060679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5' transcript replacement in vitro catalyzed by a group I intron-derived ribozyme.
    Alexander RC; Baum DA; Testa SM
    Biochemistry; 2005 May; 44(21):7796-804. PubMed ID: 15909994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribozyme mediated trans insertion-splicing of modified oligonucleotides into RNA.
    Dotson PP; Frommeyer KN; Testa SM
    Arch Biochem Biophys; 2008 Oct; 478(1):81-4. PubMed ID: 18671935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core.
    Testa SM; Haidaris CG; Gigliotti F; Turner DH
    Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a phage Twort group I ribozyme-product complex.
    Golden BL; Kim H; Chase E
    Nat Struct Mol Biol; 2005 Jan; 12(1):82-9. PubMed ID: 15580277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition in a trans excision-splicing ribozyme: non-Watson-Crick base pairs at the 5' splice site and omegaG at the 3' splice site can play a role in determining the binding register of reaction substrates.
    Baum DA; Sinha J; Testa SM
    Biochemistry; 2005 Jan; 44(3):1067-77. PubMed ID: 15654763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribozyme-mediated trans insertion-splicing into target RNAs.
    Dotson PP; Hart J; Noe C; Testa SM
    Methods Mol Biol; 2012; 848():385-94. PubMed ID: 22315082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the substrate specificity of a group I intron ribozyme.
    Zarrinkar PP; Sullenger BA
    Biochemistry; 1999 Mar; 38(11):3426-32. PubMed ID: 10079089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets.
    Xiang Q; Qin PZ; Michels WJ; Freeland K; Pyle AM
    Biochemistry; 1998 Mar; 37(11):3839-49. PubMed ID: 9521704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly.
    Hasegawa S; Rao J
    FEBS Lett; 2006 Mar; 580(6):1592-6. PubMed ID: 16472807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional effectors of a group I intron ribozyme from Pneumocystis carinii.
    Liu Y; Leibowitz MJ
    J Eukaryot Microbiol; 1994; 41(5):101S. PubMed ID: 7804195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense binding enhanced by tertiary interactions: binding of phosphorothioate and N3'-->P5' phosphoramidate hexanucleotides to the catalytic core of a group I ribozyme from the mammalian pathogen Pneumocystis carinii.
    Testa SM; Gryaznov SM; Turner DH
    Biochemistry; 1998 Jun; 37(26):9379-85. PubMed ID: 9649319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components.
    Jaeger L; Westhof E; Michel F
    J Mol Biol; 1993 Nov; 234(2):331-46. PubMed ID: 8230218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.