BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18363380)

  • 1. Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    Biochemistry; 2008 Apr; 47(16):4808-16. PubMed ID: 18363380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity.
    Betha AK; Williams AM; Martinis SA
    Biochemistry; 2007 May; 46(21):6258-67. PubMed ID: 17474713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glycine hinge for tRNA-dependent translocation of editing substrates to prevent errors by leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    FEBS Lett; 2009 Nov; 583(21):3443-7. PubMed ID: 19796639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.
    Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED
    Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
    Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED
    J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity.
    Huang Q; Zhou XL; Hu QH; Lei HY; Fang ZP; Yao P; Wang ED
    RNA; 2014 Sep; 20(9):1440-50. PubMed ID: 25051973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase.
    Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA
    Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification.
    Nakatsuka-Mori T; Sato D; Aoki H
    J Biosci Bioeng; 2022 May; 133(5):436-443. PubMed ID: 35216933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
    Boniecki MT; Vu MT; Betha AK; Martinis SA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19223-8. PubMed ID: 19020078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase.
    Nawaz MH; Pang YL; Martinis SA
    J Mol Biol; 2007 Mar; 367(2):384-94. PubMed ID: 17270210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens.
    Li L; Palencia A; Lukk T; Li Z; Luthey-Schulten ZA; Cusack S; Martinis SA; Boniecki MT
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3817-22. PubMed ID: 23431144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria.
    Karkhanis VA; Boniecki MT; Poruri K; Martinis SA
    J Biol Chem; 2006 Nov; 281(44):33217-25. PubMed ID: 16956879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic α-aminobutyrate and its fluorinated analogues.
    Zivkovic I; Moschner J; Koksch B; Gruic-Sovulj I
    FEBS J; 2020 Feb; 287(4):800-813. PubMed ID: 31486189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.
    Yan W; Ye Q; Tan M; Chen X; Eriani G; Wang ED
    J Biol Chem; 2015 May; 290(19):12256-67. PubMed ID: 25817995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase.
    Chen JF; Li T; Wang ED; Wang YL
    Biochemistry; 2001 Feb; 40(5):1144-9. PubMed ID: 11170439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.