These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18363413)

  • 1. Evolutionary screening of biomimetic coatings for selective detection of explosives.
    Jaworski JW; Raorane D; Huh JH; Majumdar A; Lee SW
    Langmuir; 2008 May; 24(9):4938-43. PubMed ID: 18363413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-oligopeptide composite coating for selective detection of explosives in water.
    Cerruti M; Jaworski J; Raorane D; Zueger C; Varadarajan J; Carraro C; Lee SW; Maboudian R; Majumdar A
    Anal Chem; 2009 Jun; 81(11):4192-9. PubMed ID: 19476386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide receptor-based selective dinitrotoluene detection using a microcantilever sensor.
    Hwang KS; Lee MH; Lee J; Yeo WS; Lee JH; Kim KM; Kang JY; Kim TS
    Biosens Bioelectron; 2011 Dec; 30(1):249-54. PubMed ID: 22000759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives.
    Spitzer D; Cottineau T; Piazzon N; Josset S; Schnell F; Pronkin SN; Savinova ER; Keller V
    Angew Chem Int Ed Engl; 2012 May; 51(22):5334-8. PubMed ID: 22544684
    [No Abstract]   [Full Text] [Related]  

  • 5. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and discrimination of low concentration explosives using MOS nanoparticle sensors.
    Gui Y; Xie C; Xu J; Wang G
    J Hazard Mater; 2009 May; 164(2-3):1030-5. PubMed ID: 18930348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid electrochemical-colorimetric sensing platform for detection of explosives.
    Forzani ES; Lu D; Leright MJ; Aguilar AD; Tsow F; Iglesias RA; Zhang Q; Lu J; Li J; Tao N
    J Am Chem Soc; 2009 Feb; 131(4):1390-1. PubMed ID: 19173664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofunctional coatings via targeted covalent cross-linking of associating triblock proteins.
    Fischer SE; Mi L; Mao HQ; Harden JL
    Biomacromolecules; 2009 Sep; 10(9):2408-17. PubMed ID: 19655714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-hairpin peptidomimetics: design, structures and biological activities.
    Robinson JA
    Acc Chem Res; 2008 Oct; 41(10):1278-88. PubMed ID: 18412373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives.
    Lee JH; Jaworski J; Jung JH
    Nanoscale; 2013 Sep; 5(18):8533-40. PubMed ID: 23892560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure-based optoelectronic sensing of vapor phase explosives--a promising but challenging method.
    Zu B; Guo Y; Dou X
    Nanoscale; 2013 Nov; 5(22):10693-701. PubMed ID: 24072058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface.
    Nagatomo K; Kawaguchi T; Miura N; Toko K; Matsumoto K
    Talanta; 2009 Sep; 79(4):1142-8. PubMed ID: 19615523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a novel design paradigm to generate general nonpeptide combinatorial templates mimicking beta-turns: synthesis of ligands for melanocortin receptors.
    Webb TR; Jiang L; Sviridov S; Venegas RE; Vlaskina AV; McGrath D; Tucker J; Wang J; Deschenes A; Li R
    J Comb Chem; 2007; 9(4):704-10. PubMed ID: 17429950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptides as protein binding site mimetics.
    Eichler J
    Curr Opin Chem Biol; 2008 Dec; 12(6):707-13. PubMed ID: 18935974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated polymer-titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors.
    Deng C; He Q; He C; Shi L; Cheng J; Lin T
    J Phys Chem B; 2010 Apr; 114(13):4725-30. PubMed ID: 20222703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.
    Beer S; Müller G; Wöllenstein J
    Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydiacetylene incorporated with peptide receptors for the detection of trinitrotoluene explosives.
    Jaworski J; Yokoyama K; Zueger C; Chung WJ; Lee SW; Majumdar A
    Langmuir; 2011 Mar; 27(6):3180-7. PubMed ID: 21275406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman chemical imaging of explosive-contaminated fingerprints.
    Emmons ED; Tripathi A; Guicheteau JA; Christesen SD; Fountain AW
    Appl Spectrosc; 2009 Nov; 63(11):1197-203. PubMed ID: 19891827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.