These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1836358)

  • 1. Prevention of Ca(2+)-induced or thromboxane B2-induced hepatocyte plasma membrane bleb formation by thromboxane receptor antagonists.
    Horton AA; Wood JM
    Biochim Biophys Acta; 1991 Dec; 1133(1):31-7. PubMed ID: 1836358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of thromboxane B2-induced hepatocyte plasma membrane bleb formation by certain prostaglandins and a proteinase inhibitor.
    Horton AA; Wood JM
    Biochim Biophys Acta; 1990 Mar; 1022(3):319-24. PubMed ID: 2107870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of Ca(2+)-induced hepatocyte plasma membrane bleb formation by inhibitors of eicosanoid synthesis.
    Horton AA; Wood JM
    J Lipid Mediat; 1989; 1(4):231-42. PubMed ID: 2519895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of a new specific thromboxane antagonist in arachidonate-induced sudden death.
    Lefer DJ; Mentley RK; Lefer AM
    Arch Int Pharmacodyn Ther; 1987 May; 287(1):89-95. PubMed ID: 2957969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of prostaglandin D2 clearance in rat hepatocytes by the thromboxane receptor antagonists daltroban and ifetroban and the thromboxane synthase inhibitor furegrelate.
    Pestel S; Nath A; Jungermann K; Schieferdecker HL
    Biochem Pharmacol; 2003 Aug; 66(4):643-52. PubMed ID: 12906929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca2+ is mediated by the activation of a non-lysosomal proteolytic system.
    Nicotera P; Hartzell P; Davis G; Orrenius S
    FEBS Lett; 1986 Dec; 209(1):139-44. PubMed ID: 3100326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thromboxane mediates the renal hemodynamic effects of platelet activating factor.
    Yoo J; Schlondorff D; Neugarten J
    J Pharmacol Exp Ther; 1990 May; 253(2):743-8. PubMed ID: 2140130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of calcium ionophore (A23187) on the production of thromboxane B2 in human polymorphonuclear cells in vitro].
    Cifone MG; El-Tawil C; El Din AS; Alesse E; Ianni G; Reale M; Continenza MA; Conti P
    Boll Soc Ital Biol Sper; 1984 Jan; 60(1):219-25. PubMed ID: 6422962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the role of calcium in the control of thromboxane B2 production.
    Best LC; Bone EA; Jones PB; Russell RG
    Artery; 1980; 8(5):487-93. PubMed ID: 6783015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of calcium in thromboxane B2-mediated injury to rabbit gastric mucosal cells.
    Wong HM; Soper BD; Tepperman BL
    Dig Dis Sci; 1995 Sep; 40(9):2022-8. PubMed ID: 7555460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-Prostaglandin I1, (U-60,257) stimulates prostaglandin D2 and inhibits thromboxane B2 release from ionophore challenged human dispersed lung cells.
    Holgate ST; Robinson C
    Br J Pharmacol; 1984 Nov; 83(3):603-5. PubMed ID: 6439267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thromboxane receptor antagonists on venous thrombosis in rats.
    Schumacher WA; Heran CL
    J Pharmacol Exp Ther; 1989 Mar; 248(3):1109-15. PubMed ID: 2522985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megakaryocyte thromboxane production induced by platelet stimuli during in vitro culture.
    Walenga RW; Miller JL; Stuart MJ
    Exp Hematol; 1985 Feb; 13(2):87-91. PubMed ID: 3918879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paradoxical effects of indomethacin and trifluoperazine on Ca2+ ionophore A23187-induced human platelet aggregation, thromboxane B2 production, and dense granule release.
    Krishnamurthi S; Westwick J; Kakkar VV
    Adv Prostaglandin Thromboxane Leukot Res; 1983; 11():435-40. PubMed ID: 6221559
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of thromboxane receptor antagonists on oestrogen-induced uterotrophic responses in the spontaneously hypertensive rat.
    Kerr MB; Marshall K; Senior J
    Br J Pharmacol; 1991 Jun; 103(2):1363-6. PubMed ID: 1832065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of chemical-induced toxicity. II. Role of extracellular calcium.
    Fariss MW; Reed DJ
    Toxicol Appl Pharmacol; 1985 Jun; 79(2):296-306. PubMed ID: 2988155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thromboxane-induced phosphatidate formation in human platelets. Relationship to receptor occupancy and to changes in cytosolic free calcium.
    Pollock WK; Armstrong RA; Brydon LJ; Jones RL; MacIntyre DE
    Biochem J; 1984 May; 219(3):833-42. PubMed ID: 6234886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostaglandin endoperoxides and thromboxane A2 activate the same receptor isoforms in human platelets.
    Vezza R; Mezzasoma AM; Venditti G; Gresele P
    Thromb Haemost; 2002 Jan; 87(1):114-21. PubMed ID: 11848439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of contraction-mediating prostanoid receptors in human hand veins: effects of the thromboxane receptor antagonists BM13,505 and AH23848.
    Arner M; Högestätt ED; Uski TK
    Acta Physiol Scand; 1991 Jan; 141(1):79-86. PubMed ID: 2053448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium transport by intact synaptosomes. Influence of ionophore A23187 on plasma-membrane potential, plasma-membrane calcium transport, mitochondrial membrane potential, respiration, cytosolic free-calcium concentration and noradrenaline release.
    Akerman KE; Nicholls DG
    Eur J Biochem; 1981 Mar; 115(1):67-73. PubMed ID: 6785087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.