These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18363618)

  • 21. The photoreactions of recombinant phytochrome CphA from the cyanobacterium Calothrix PCC7601: a low-temperature UV-Vis and FTIR study.
    Schwinté P; Gärtner W; Sharda S; Mroginski MA; Hildebrandt P; Siebert F
    Photochem Photobiol; 2009; 85(1):239-49. PubMed ID: 18764898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing protein-chromophore interactions in Cph1 phytochrome by mutagenesis.
    Hahn J; Strauss HM; Landgraf FT; Gimenèz HF; Lochnit G; Schmieder P; Hughes J
    FEBS J; 2006 Apr; 273(7):1415-29. PubMed ID: 16689929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kurt Schaffner: from organic photochemistry to photobiology.
    Gärtner W
    Photochem Photobiol Sci; 2012 Jun; 11(6):872-80. PubMed ID: 22453354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins.
    Cornejo J; Beale SI; Terry MJ; Lagarias JC
    J Biol Chem; 1992 Jul; 267(21):14790-8. PubMed ID: 1634523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biliverdin binds covalently to agrobacterium phytochrome Agp1 via its ring A vinyl side chain.
    Lamparter T; Michael N; Caspani O; Miyata T; Shirai K; Inomata K
    J Biol Chem; 2003 Sep; 278(36):33786-92. PubMed ID: 12824166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering intrinsic deactivation/isomerization routes in a phytochrome chromophore model.
    Altoè P; Climent T; De Fusco GC; Stenta M; Bottoni A; Serrano-Andrés L; Merchán M; Orlandi G; Garavelli M
    J Phys Chem B; 2009 Nov; 113(45):15067-73. PubMed ID: 19588982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully Quantum Chemical Treatment of Chromophore-Protein Interactions in Phytochromes.
    González R; Mroginski MA
    J Phys Chem B; 2019 Nov; 123(46):9819-9830. PubMed ID: 31674186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion.
    Burgie ES; Zhang J; Vierstra RD
    Structure; 2016 Mar; 24(3):448-57. PubMed ID: 26853942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chromophore structural changes during the photocycle of phytochrome: a combined resonance Raman and quantum chemical approach.
    Mroginski MA; Murgida DH; Hildebrandt P
    Acc Chem Res; 2007 Apr; 40(4):258-66. PubMed ID: 17279729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining the bilin lyase domain: lessons from the extended phytochrome superfamily.
    Wu SH; Lagarias JC
    Biochemistry; 2000 Nov; 39(44):13487-95. PubMed ID: 11063585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15.
    Durbeej B
    Phys Chem Chem Phys; 2009 Mar; 11(9):1354-61. PubMed ID: 19224036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational homogeneity and excited-state isomerization dynamics of the bilin chromophore in phytochrome Cph1 from resonance Raman intensities.
    Spillane KM; Dasgupta J; Mathies RA
    Biophys J; 2012 Feb; 102(3):709-17. PubMed ID: 22325295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies.
    Durbeej B; Eriksson LA
    Phys Chem Chem Phys; 2006 Sep; 8(35):4053-71. PubMed ID: 17028694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance Raman spectroscopic study of the tryptic 39-kDa fragment of phytochrome.
    Kneip C; Schlamann W; Braslavsky SE; Hildebrandt P; Schaffner K
    FEBS Lett; 2000 Oct; 482(3):252-6. PubMed ID: 11024470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stereoselective Michael addition of carbon-, nitrogen-, oxygen-, and sulfur-centered nucleophiles on enantiopure hydroxylated 6,7-dehydro-5-oxoindolizidine. Synthesis of carbon- or hetero-7-substituted swainsonine analogues.
    Tinarelli A; Paolucci C
    J Org Chem; 2006 Aug; 71(17):6630-3. PubMed ID: 16901158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the Deprotonated Pyrrole Nitrogen of the Bilin-Based Photoreceptor by Raman Spectroscopy with an Advanced Computational Analysis.
    Osoegawa S; Miyoshi R; Watanabe K; Hirose Y; Fujisawa T; Ikeuchi M; Unno M
    J Phys Chem B; 2019 Apr; 123(15):3242-3247. PubMed ID: 30913882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real time spectral analysis during phytochrome chromophore and chromoprotein purification.
    Zeidler M; Lang C; Hahn J; Hughes J
    Int J Biol Macromol; 2006 Aug; 39(1-3):100-3. PubMed ID: 16616774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A polarity probe for monitoring light-induced structural changes at the entrance of the chromophore pocket in a bacterial phytochrome.
    Borucki B; Lamparter T
    J Biol Chem; 2009 Sep; 284(38):26005-16. PubMed ID: 19640848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steric Effects Govern the Photoactivation of Phytochromes.
    Falklöf O; Durbeej B
    Chemphyschem; 2016 Apr; 17(7):954-7. PubMed ID: 26756452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues.
    Andel F; Murphy JT; Haas JA; McDowell MT; van der Hoef I; Lugtenburg J; Lagarias JC; Mathies RA
    Biochemistry; 2000 Mar; 39(10):2667-76. PubMed ID: 10704217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.