These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 18363715)
1. Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1. Huang WE; Singer AC; Spiers AJ; Preston GM; Whiteley AS Environ Microbiol; 2008 Jul; 10(7):1668-80. PubMed ID: 18363715 [TBL] [Abstract][Full Text] [Related]
2. Physical and functional analysis of the prokaryotic enhancer of the sigma 54-promoters of the TOL plasmid of Pseudomonas putida. Pérez-Martín J; de Lorenzo V J Mol Biol; 1996 May; 258(4):562-74. PubMed ID: 8636992 [TBL] [Abstract][Full Text] [Related]
3. In vitro activities of an N-terminal truncated form of XylR, a sigma 54-dependent transcriptional activator of Pseudomonas putida. Pérez-Martín J; de Lorenzo V J Mol Biol; 1996 May; 258(4):575-87. PubMed ID: 8636993 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma54-promoter Pu to the response regulator PprA. Vitale E; Milani A; Renzi F; Galli E; Rescalli E; de Lorenzo V; Bertoni G Mol Microbiol; 2008 Aug; 69(3):698-713. PubMed ID: 19138193 [TBL] [Abstract][Full Text] [Related]
5. Active recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and alphaCTD. Bertoni G; Fujita N; Ishihama A; de Lorenzo V EMBO J; 1998 Sep; 17(17):5120-8. PubMed ID: 9724648 [TBL] [Abstract][Full Text] [Related]
6. Design of new promoters and of a dual-bioreporter based on cross-activation by the two regulatory proteins XylR and HbpR. Tropel D; Bähler A; Globig K; van der Meer JR Environ Microbiol; 2004 Nov; 6(11):1186-96. PubMed ID: 15479251 [TBL] [Abstract][Full Text] [Related]
7. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. Kim MN; Park HH; Lim WK; Shin HJ J Microbiol Methods; 2005 Feb; 60(2):235-45. PubMed ID: 15590098 [TBL] [Abstract][Full Text] [Related]
8. m-xylene-responsive Pu-PnifH hybrid sigma54 promoters that overcome physiological control in Pseudomonas putida KT2442. Carmona M; Fernández S; Rodríguez MJ; de Lorenzo V J Bacteriol; 2005 Jan; 187(1):125-34. PubMed ID: 15601696 [TBL] [Abstract][Full Text] [Related]
9. Genetic evidence of distinct physiological regulation mechanisms in the sigma(54) Pu promoter of Pseudomonas putida. Cases I; de Lorenzo V J Bacteriol; 2000 Feb; 182(4):956-60. PubMed ID: 10648520 [TBL] [Abstract][Full Text] [Related]
10. Evidence of multiple regulatory functions for the PtsN (IIA(Ntr)) protein of Pseudomonas putida. Cases I; Lopez JA; Albar JP; De Lorenzo V J Bacteriol; 2001 Feb; 183(3):1032-7. PubMed ID: 11208802 [TBL] [Abstract][Full Text] [Related]
11. sigma54-RNA polymerase controls sigma70-dependent transcription from a non-overlapping divergent promoter. Johansson LU; Solera D; Bernardo LM; Moscoso JA; Shingler V Mol Microbiol; 2008 Nov; 70(3):709-23. PubMed ID: 18786144 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. Marqués S; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1994 May; 176(9):2517-24. PubMed ID: 8169200 [TBL] [Abstract][Full Text] [Related]
13. Rationally rewiring the connectivity of the XylR/Pu regulatory node of the m-xylene degradation pathway in Pseudomonas putida. de Las Heras A; Martínez-García E; Domingo-Sananes MR; Fraile S; de Lorenzo V Integr Biol (Camb); 2016 Apr; 8(4):571-6. PubMed ID: 26961967 [TBL] [Abstract][Full Text] [Related]
14. In vivo drafting of single-chain antibodies for regulatory duty on the sigma54-promoter Pu of the TOL plasmid. Jurado P; Fernández LA; de Lorenzo V Mol Microbiol; 2006 Jun; 60(5):1218-27. PubMed ID: 16689797 [TBL] [Abstract][Full Text] [Related]
15. Transient XylR binding to the UAS of the Pseudomonas putida sigma54 promoter Pu revealed with high intensity UV footprinting in vivo. Valls M; de Lorenzo V Nucleic Acids Res; 2003 Dec; 31(23):6926-34. PubMed ID: 14627825 [TBL] [Abstract][Full Text] [Related]
16. CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1. Ezezika OC; Collier-Hyams LS; Dale HA; Burk AC; Neidle EL Appl Environ Microbiol; 2006 Mar; 72(3):1749-58. PubMed ID: 16517618 [TBL] [Abstract][Full Text] [Related]
17. Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma54 Pu promoter of Pseudomonas putida. Velázquez F; di Bartolo I; de Lorenzo V J Bacteriol; 2004 Dec; 186(24):8267-75. PubMed ID: 15576775 [TBL] [Abstract][Full Text] [Related]
18. Quantitative measurement of pH influence on SalR regulated gene expression in Acinetobacter baylyi ADP1. Li C; Wang H; Zhou L; Zhang Y; Song F; Zhang J J Microbiol Methods; 2009 Oct; 79(1):8-12. PubMed ID: 19616585 [TBL] [Abstract][Full Text] [Related]
19. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Aranda-Olmedo I; Ramos JL; Marqués S Appl Environ Microbiol; 2005 Aug; 71(8):4191-8. PubMed ID: 16085802 [TBL] [Abstract][Full Text] [Related]
20. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment. de Las Heras A; de Lorenzo V Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]