BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

715 related articles for article (PubMed ID: 18364002)

  • 1. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives.
    Rodríguez PC; Ochoa AC
    Immunol Rev; 2008 Apr; 222():180-91. PubMed ID: 18364002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives.
    Raber P; Ochoa AC; Rodríguez PC
    Immunol Invest; 2012; 41(6-7):614-34. PubMed ID: 23017138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells.
    Fletcher M; Ramirez ME; Sierra RA; Raber P; Thevenot P; Al-Khami AA; Sanchez-Pino D; Hernandez C; Wyczechowska DD; Ochoa AC; Rodriguez PC
    Cancer Res; 2015 Jan; 75(2):275-83. PubMed ID: 25406192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginase-dependent suppression by CpG-ODN plus IFA-induced splenic myeloid CD11b(+)Gr1(+) cells.
    Ranocchia RP; Gorlino CV; Crespo MI; Harman MF; Liscovsky MV; Morón G; Maletto BA; Pistoresi-Palencia MC
    Immunol Cell Biol; 2012 Aug; 90(7):710-21. PubMed ID: 22083526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells.
    Obermajer N; Wong JL; Edwards RP; Odunsi K; Moysich K; Kalinski P
    Immunol Invest; 2012; 41(6-7):635-57. PubMed ID: 23017139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity.
    Cimen Bozkus C; Elzey BD; Crist SA; Ellies LG; Ratliff TL
    J Immunol; 2015 Dec; 195(11):5237-50. PubMed ID: 26491198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid metabolism related to immune tolerance by MDSCs.
    Yang B; Wang X; Ren X
    Int Rev Immunol; 2012 Jun; 31(3):177-83. PubMed ID: 22587019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling defects in anti-tumor T cells.
    Frey AB; Monu N
    Immunol Rev; 2008 Apr; 222():192-205. PubMed ID: 18364003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells.
    Donkor MK; Lahue E; Hoke TA; Shafer LR; Coskun U; Solheim JC; Gulen D; Bishay J; Talmadge JE
    Int Immunopharmacol; 2009 Jul; 9(7-8):937-48. PubMed ID: 19362167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer.
    Karakasheva TA; Waldron TJ; Eruslanov E; Kim SB; Lee JS; O'Brien S; Hicks PD; Basu D; Singhal S; Malavasi F; Rustgi AK
    Cancer Res; 2015 Oct; 75(19):4074-85. PubMed ID: 26294209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients.
    Darcy CJ; Minigo G; Piera KA; Davis JS; McNeil YR; Chen Y; Volkheimer AD; Weinberg JB; Anstey NM; Woodberry T
    Crit Care; 2014 Aug; 18(4):R163. PubMed ID: 25084831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STAT3 Silencing and TLR7/8 Pathway Activation Repolarize and Suppress Myeloid-Derived Suppressor Cells From Breast Cancer Patients.
    Safarzadeh E; Mohammadi A; Mansoori B; Duijf PHG; Hashemzadeh S; Khaze V; Kazemi T; Derakhshani A; Silvestris N; Baradaran B
    Front Immunol; 2020; 11():613215. PubMed ID: 33679700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes.
    Rodriguez PC; Ernstoff MS; Hernandez C; Atkins M; Zabaleta J; Sierra R; Ochoa AC
    Cancer Res; 2009 Feb; 69(4):1553-60. PubMed ID: 19201693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.
    Steggerda SM; Bennett MK; Chen J; Emberley E; Huang T; Janes JR; Li W; MacKinnon AL; Makkouk A; Marguier G; Murray PJ; Neou S; Pan A; Parlati F; Rodriguez MLM; Van de Velde LA; Wang T; Works M; Zhang J; Zhang W; Gross MI
    J Immunother Cancer; 2017 Dec; 5(1):101. PubMed ID: 29254508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses.
    Rodriguez PC; Quiceno DG; Zabaleta J; Ortiz B; Zea AH; Piazuelo MB; Delgado A; Correa P; Brayer J; Sotomayor EM; Antonia S; Ochoa JB; Ochoa AC
    Cancer Res; 2004 Aug; 64(16):5839-49. PubMed ID: 15313928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid Cell-Derived Arginase in Cancer Immune Response.
    Grzywa TM; Sosnowska A; Matryba P; Rydzynska Z; Jasinski M; Nowis D; Golab J
    Front Immunol; 2020; 11():938. PubMed ID: 32499785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginase-1 is neither constitutively expressed in nor required for myeloid-derived suppressor cell-mediated inhibition of T-cell proliferation.
    Bian Z; Abdelaal AM; Shi L; Liang H; Xiong L; Kidder K; Venkataramani M; Culpepper C; Zen K; Liu Y
    Eur J Immunol; 2018 Jun; 48(6):1046-1058. PubMed ID: 29488625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antigen specificity of immune suppression by myeloid-derived suppressor cells.
    Solito S; Bronte V; Mandruzzato S
    J Leukoc Biol; 2011 Jul; 90(1):31-6. PubMed ID: 21486906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Myeloid-derived suppressor cells - the new mechanism of immunosuppression in cancer].
    Luczyński W; Krawczuk-Rybak M; Stasiak-Barmuta A
    Postepy Hig Med Dosw (Online); 2008 Jan; 62():18-22. PubMed ID: 18219264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion.
    Leonard W; Dufait I; Schwarze JK; Law K; Engels B; Jiang H; Van den Berge D; Gevaert T; Storme G; Verovski V; Breckpot K; De Ridder M
    Radiother Oncol; 2016 May; 119(2):291-9. PubMed ID: 26874542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.