These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18364036)

  • 1. Neonatal maternal separation and enhancement of the inspiratory (phrenic) response to hypoxia in adult rats: disruption of GABAergic neurotransmission in the nucleus tractus solitarius.
    Kinkead R; Balon N; Genest SE; Gulemetova R; Laforest S; Drolet G
    Eur J Neurosci; 2008 Mar; 27(5):1174-88. PubMed ID: 18364036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal maternal separation and enhancement of the hypoxic ventilatory response in rat: the role of GABAergic modulation within the paraventricular nucleus of the hypothalamus.
    Genest SE; Balon N; Laforest S; Drolet G; Kinkead R
    J Physiol; 2007 Aug; 583(Pt 1):299-314. PubMed ID: 17569732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal maternal separation enhances phrenic responses to hypoxia and carotid sinus nerve stimulation in the adult anesthetized rat.
    Kinkead R; Gulemetova R; Bairam A
    J Appl Physiol (1985); 2005 Jul; 99(1):189-96. PubMed ID: 15790692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function.
    Ostrowski TD; Ostrowski D; Hasser EM; Kline DD
    J Neurophysiol; 2014 Jun; 111(12):2493-504. PubMed ID: 24671532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal stress augments the hypoxic chemoreflex of adult male rats by increasing AMPA receptor-mediated modulation.
    Gulemetova R; Drolet G; Kinkead R
    Exp Physiol; 2013 Aug; 98(8):1312-24. PubMed ID: 23603375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation.
    Costa-Silva JH; Zoccal DB; Machado BH
    J Neurophysiol; 2010 Apr; 103(4):2095-106. PubMed ID: 20164386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase C activity in the nucleus tractus solitarii is critically involved in the acute hypoxic ventilatory response, but is not required for intermittent hypoxia-induced phrenic long-term facilitation in adult rats.
    Reeves SR; Gozal D
    Exp Physiol; 2007 Nov; 92(6):1057-66. PubMed ID: 17675414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testosterone potentiates the hypoxic ventilatory response of adult male rats subjected to neonatal stress.
    Fournier S; Gulemetova R; Joseph V; Kinkead R
    Exp Physiol; 2014 May; 99(5):824-34. PubMed ID: 24610832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzodiazepine-sensitive GABA(A) receptors in the commissural subnucleus of the NTS are involved in the carotid chemoreceptor reflex in rats.
    Suzuki M; Nishina M; Nakamura S; Maruyama K
    Auton Neurosci; 2004 Feb; 110(2):108-13. PubMed ID: 15046734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAergic effects on nucleus tractus solitarius neurons receiving gastric vagal inputs.
    Yuan CS; Liu D; Attele AS
    J Pharmacol Exp Ther; 1998 Aug; 286(2):736-41. PubMed ID: 9694928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific subnuclei of the nucleus tractus solitarius play a role in determining the duration of inspiration in the rat.
    Wasserman AM; Sahibzada N; Hernandez YM; Gillis RA
    Brain Res; 2000 Oct; 880(1-2):118-30. PubMed ID: 11032996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA-mediated neurotransmission in the nucleus of the solitary tract alters resting ventilation following exposure to chronic hypoxia in conscious rats.
    Chung S; Ivy GO; Reid SG
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1449-56. PubMed ID: 16778062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neonatal maternal separation induces sex-specific augmentation of the hypercapnic ventilatory response in awake rat.
    Genest SE; Gulemetova R; Laforest S; Drolet G; Kinkead R
    J Appl Physiol (1985); 2007 Apr; 102(4):1416-21. PubMed ID: 17185497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective GABAergic neurotransmission in the nucleus tractus solitarius in Mecp2-null mice, a model of Rett syndrome.
    Chen CY; Di Lucente J; Lin YC; Lien CC; Rogawski MA; Maezawa I; Jin LW
    Neurobiol Dis; 2018 Jan; 109(Pt A):25-32. PubMed ID: 28927958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAergic systems in the nucleus tractus solitarius regulate noradrenaline release in the subfornical organ area in the rat.
    Tanaka J; Mashiko N; Kawakami A; Ushigome A; Nomura M
    Auton Neurosci; 2002 Sep; 100(1-2):58-65. PubMed ID: 12422961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of GABA(A) receptors in nucleus tractus solitarius neurons from neonatal rats.
    Huang RQ; Dillon GH
    Brain Res; 2001 Dec; 921(1-2):183-94. PubMed ID: 11720725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal maternal separation and sex-specific plasticity of the hypoxic ventilatory response in awake rat.
    Genest SE; Gulemetova R; Laforest S; Drolet G; Kinkead R
    J Physiol; 2004 Jan; 554(Pt 2):543-57. PubMed ID: 14634199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius.
    Walker BR; Easton A; Gale K
    Epilepsia; 1999 Aug; 40(8):1051-7. PubMed ID: 10448815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal stress and abnormal hypercapnic ventilatory response of adult male rats: the role of central chemodetection and pulmonary stretch receptors.
    Dumont FS; Kinkead R
    Respir Physiol Neurobiol; 2011 Dec; 179(2-3):158-66. PubMed ID: 21824531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular deconditioning increases GABA signaling in the nucleus tractus solitarii.
    Lima-Silveira L; Hasser EM; Kline DD
    J Neurophysiol; 2022 Jul; 128(1):28-39. PubMed ID: 35642806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.