These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 1836413)

  • 1. [Variability of biological glucose transport activity in human erythrocytes].
    Feugeas JP; Néel D; Goussault Y; Derappe C
    C R Seances Soc Biol Fil; 1991; 185(4):190-7. PubMed ID: 1836413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane glucose carriers in the monkey lens. Quantitation and regional distribution as determined by cytochalasin B binding to lens membranes.
    Lucas VA; Zigler JS
    Invest Ophthalmol Vis Sci; 1987 Aug; 28(8):1404-12. PubMed ID: 3610555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redefining the facilitated transport of mannose in human cells: absence of a glucose-insensitive, high-affinity facilitated mannose transport system.
    Rodríguez P; Rivas CI; Godoy A; Villanueva M; Fischbarg J; Vera JC; Reyes AM
    Biochemistry; 2005 Jan; 44(1):313-20. PubMed ID: 15628873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte D-glucose transport activity in reconstituted model membranes of different lipid composition.
    Cestaro B; Cervato G; Carandente O; Girardi AM; Pozza G
    Biochem Int; 1988 Feb; 16(2):323-9. PubMed ID: 3365265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoplasmic Ca2+ inhibits the glucose transporter of human erythrocytes.
    Tu YP; Xiao L; Su XF; Yang FY
    Biochem Mol Biol Int; 1995 Jun; 36(2):383-91. PubMed ID: 7663442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active and passive transport of sodium and potassium ions in erythrocytes of severely malnourished Jamaican children.
    Willis JS; Golden MH
    Eur J Clin Nutr; 1988 Aug; 42(8):635-45. PubMed ID: 3141142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes.
    Livshits L; Caduff A; Talary MS; Lutz HU; Hayashi Y; Puzenko A; Shendrik A; Feldman Y
    J Phys Chem B; 2009 Feb; 113(7):2212-20. PubMed ID: 19166280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro.
    Klepper J; Flörcken A; Fischbarg J; Voit T
    Eur J Pediatr; 2003 Feb; 162(2):84-9. PubMed ID: 12548383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometric analysis of glucose transport by rat brain cells.
    Aller CB; Ehmann S; Gilman-Sachs A; Snyder AK
    Cytometry; 1997 Mar; 27(3):262-8. PubMed ID: 9041115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Glucose transport inhibition in human erythrocytes by calmodulin antagonists].
    Kosovskiĭ MI; Gagel'gans AI
    Tsitologiia; 1986 Sep; 28(9):1008-12. PubMed ID: 3798559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes on glucose transport and utilization of human erythrocytes: effect of oxidative stress.
    Güven M; Ozkiliç A; Kanigür-Sultuybek G; Ulutin T
    Gerontology; 1999; 45(2):79-82. PubMed ID: 9933729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Disorders of the oxygen transport system in children with suppurative peritonitis].
    Solodovnikova FN; Arinchin VN; Kurek VV
    Vestn Khir Im I I Grek; 1991 Mar; 146(3):89-90. PubMed ID: 1654655
    [No Abstract]   [Full Text] [Related]  

  • 19. Exchange transport of aldoses in human erythrocytes of different ages.
    Bican P; Lacko L
    Vox Sang; 1966; 11(4):498-503. PubMed ID: 5965421
    [No Abstract]   [Full Text] [Related]  

  • 20. Lack of exchange of the 1-oxygen of glucose with water during glucose transport in human red blood cells.
    Rose IA; O'Connell EL; Langdon R
    Arch Biochem Biophys; 1968 Aug; 126(2):727-8. PubMed ID: 5672526
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.