These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Ni T; Pinson JA; Gupta S; Santoro RJ Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570 [TBL] [Abstract][Full Text] [Related]
6. Three-wavelength broadband soot pyrometry technique for axisymmetric flames. Cruz JJ; Escudero F; Álvarez E; Figueira da Silva LF; Carvajal G; Thomsen M; Fuentes A Opt Lett; 2021 Jun; 46(11):2654-2657. PubMed ID: 34061080 [TBL] [Abstract][Full Text] [Related]
7. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Snelling DR; Smallwood GJ; Liu F; Gülder OL; Bachalo WD Appl Opt; 2005 Nov; 44(31):6773-85. PubMed ID: 16270566 [TBL] [Abstract][Full Text] [Related]
8. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique. Kashif M; Bonnety J; Guibert P; Morin C; Legros G Opt Express; 2012 Dec; 20(27):28742-51. PubMed ID: 23263112 [TBL] [Abstract][Full Text] [Related]
9. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine. Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720 [TBL] [Abstract][Full Text] [Related]
10. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications. Dasappa S; Camacho J Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968 [TBL] [Abstract][Full Text] [Related]
11. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames. Ren T; Zhou Y; Wang Q; Liu H; Li Z; Zhao C Opt Express; 2021 Jan; 29(2):1678-1693. PubMed ID: 33726377 [TBL] [Abstract][Full Text] [Related]
13. Investigation of sooting flames by color-ratio pyrometry with a consumer-grade DSLR camera. Sankaranarayanan A; Swami U; Sasidharakurup R; Chowdhury A; Kumbhakarna N Rev Sci Instrum; 2021 Apr; 92(4):044905. PubMed ID: 34243423 [TBL] [Abstract][Full Text] [Related]
14. Infrared spectral soot emission for robust and high-fidelity flame thermometry. Ma L; Du W; Wen D; Wang Y Opt Lett; 2023 Feb; 48(4):980-983. PubMed ID: 36790994 [TBL] [Abstract][Full Text] [Related]
15. Two-color pyrometry system to eliminate optical errors for spatially resolved measurements in flames. Reggeti SA; Agrawal AK; Bittle JA Appl Opt; 2019 Nov; 58(32):8905-8913. PubMed ID: 31873674 [TBL] [Abstract][Full Text] [Related]
16. Experimental and numerical research on the effects of pressure and CO Zhou Y; Zhang P; Wang S; Cai J; Xi J RSC Adv; 2024 Sep; 14(41):30260-30271. PubMed ID: 39315025 [TBL] [Abstract][Full Text] [Related]
17. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames. De Iuliis S; Cignoli F; Zizak G Appl Opt; 2005 Dec; 44(34):7414-23. PubMed ID: 16353814 [TBL] [Abstract][Full Text] [Related]
18. Experimental study of the effect of CO An X; Cai W; Yang Y; Zheng S; Lu Q RSC Adv; 2023 Mar; 13(12):8173-8181. PubMed ID: 36922945 [TBL] [Abstract][Full Text] [Related]
19. Use of high dynamic range imaging for quantitative combustion diagnostics. Giassi D; Liu B; Long MB Appl Opt; 2015 May; 54(14):4580-8. PubMed ID: 25967519 [TBL] [Abstract][Full Text] [Related]
20. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames. Gleason K; Gomez A J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]