These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18364895)

  • 1. Interline Transfer CCD Camera for Gated Broadband Coherent Anti-Stokes Raman-Scattering Measurements.
    Roy S; Ray G; Lucht RP
    Appl Opt; 2001 Nov; 40(33):6005-11. PubMed ID: 18364895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements.
    Rakestraw DJ; Lucht RP; Dreier T
    Appl Opt; 1989 Oct; 28(19):4116-20. PubMed ID: 20555836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N(2) thermometry.
    Plath I; Meier W; Stricker W
    Opt Lett; 1992 Jan; 17(1):79-81. PubMed ID: 19784236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis.
    Khmaladze A; Jasensky J; Price E; Zhang C; Boughton A; Han X; Seeley E; Liu X; Banaszak Holl MM; Chen Z
    Appl Spectrosc; 2014; 68(10):1116-22. PubMed ID: 25198903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous vibrational and pure rotational coherent anti-stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames.
    Brackmann C; Bood J; Bengtsson PE; Seeger T; Schenk M; Leipertz A
    Appl Opt; 2002 Jan; 41(3):564-72. PubMed ID: 11905583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser.
    Roy S; Meyer TR; Gord JR
    Opt Lett; 2005 Dec; 30(23):3222-4. PubMed ID: 16342727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz.
    Richardson DR; Bangar D; Lucht RP
    Opt Express; 2012 Sep; 20(19):21495-504. PubMed ID: 23037269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise characteristics of single shot broadband Raman-resonant CARS with single- and multimode lasers.
    Kröll S; Aldén M; Berglind T; Hall RJ
    Appl Opt; 1987 Mar; 26(6):1068-73. PubMed ID: 20454271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-resonance enhanced O2 detection for dual-broadband pure rotational coherent anti-Stokes Raman scattering with an ultraviolet-visible setup at 266 nm.
    Schenk M; Seeger T; Leipertz A
    Appl Opt; 2005 Jul; 44(19):4157-65. PubMed ID: 16004065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen thermometry in an inductively coupled plasma torch using broadband nanosecond coherent anti-Stokes Raman scattering.
    Fries D; Stark ST; Murray JS; Bhakta R; Jans ER; Clemens NT; Varghese PL; Kearney SP
    Appl Opt; 2023 Oct; 62(29):7560-7570. PubMed ID: 37855462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile.
    van Veen EH; Roekaerts D
    Appl Opt; 2005 Nov; 44(32):6995-7004. PubMed ID: 16294976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy.
    Kliewer CJ; Gao Y; Seeger T; Patterson BD; Farrow RL; Settersten TB
    Appl Opt; 2011 Apr; 50(12):1770-8. PubMed ID: 21509070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background suppression for CARS thermometry in highly luminous flames using an electro-optical shutter.
    Senior WCB; Gejji RM; Gai T; Slabaugh CD; Lucht RP
    Opt Lett; 2023 Apr; 48(8):2010-2013. PubMed ID: 37058629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air.
    Seeger T; Leipertz A
    Appl Opt; 1996 May; 35(15):2665-71. PubMed ID: 21085414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS.
    Pealat M; Magre P; Bouchardy P; Collin G
    Appl Opt; 1991 Apr; 30(10):1263-73. PubMed ID: 20582137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera.
    Mitchell AC; Wall JE; Murray JG; Morgan CG
    J Microsc; 2002 Jun; 206(Pt 3):233-8. PubMed ID: 12067368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K.
    Vestin F; Nilsson K; Bengtsson PE
    Appl Opt; 2008 Apr; 47(11):1893-901. PubMed ID: 18404188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of multipoint vibrational coherent anti-Stokes Raman spectroscopy for flame applications.
    Afzelius M; Bengtsson PE; Bood J; Brackmann C; Kurtz A
    Appl Opt; 2006 Feb; 45(6):1177-86. PubMed ID: 16523780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry.
    Miller JD; Slipchenko MN; Mance JG; Roy S; Gord JR
    Opt Express; 2016 Oct; 24(22):24971-24979. PubMed ID: 27828437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering.
    Meyer TR; Roy S; Gord JR
    Appl Spectrosc; 2007 Nov; 61(11):1135-40. PubMed ID: 18028690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.