These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18364929)

  • 1. Monolithic integration of microfluidic channels and optical waveguides in silica on silicon.
    Friis P; Hoppe K; Leistiko O; Mogensen KB; Hübner J; Kutter JP
    Appl Opt; 2001 Dec; 40(34):6246-51. PubMed ID: 18364929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic channels with ultralow-loss waveguide crossings for various chip-integrated photonic sensors.
    Wang Z; Yan H; Chakravarty S; Subbaraman H; Xu X; Fan DL; Wang AX; Chen RT
    Opt Lett; 2015 Apr; 40(7):1563-6. PubMed ID: 25831385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimode interference devices for focusing in microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Lett; 2011 Aug; 36(16):3067-9. PubMed ID: 21847162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure-silica optical waveguides, fiber couplers, and high-aspect ratio submicrometer channels for electrokinetic separation devices.
    Mogensen KB; Eriksson F; Gustafsson O; Nikolajsen RP; Kutter JP
    Electrophoresis; 2004 Nov; 25(21-22):3788-95. PubMed ID: 15565688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems.
    Mogensen KB; Friis P; Hübner J; Petersen N; Jørgensen AM; Telleman P; Kutter JP
    Opt Lett; 2001 May; 26(10):716-8. PubMed ID: 18040430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems.
    Mogensen KB; El-Ali J; Wolff A; Kutter JP
    Appl Opt; 2003 Jul; 42(19):4072-9. PubMed ID: 12868849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated polymer analysis chip for optical detection.
    Fleger M; Siepe D; Neyer A
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):159-61. PubMed ID: 16475861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices.
    Ruano JM; Benoit V; Aitchison JS; Cooper JM
    Anal Chem; 2000 Mar; 72(5):1093-7. PubMed ID: 10739218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform.
    Matsuda N; Karkus P; Nishi H; Tsuchizawa T; Munro WJ; Takesue H; Yamada K
    Opt Express; 2014 Sep; 22(19):22831-40. PubMed ID: 25321753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer.
    Takigawa R; Asano T
    Opt Express; 2018 Sep; 26(19):24413-24421. PubMed ID: 30469560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel.
    Maselli V; Grenier JR; Ho S; Herman PR
    Opt Express; 2009 Jul; 17(14):11719-29. PubMed ID: 19582086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices.
    Feidenhans'l NA; Lafleur JP; Jensen TG; Kutter JP
    Electrophoresis; 2014 Feb; 35(2-3):282-8. PubMed ID: 23983194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization.
    Park W; Han S; Kwon S
    Lab Chip; 2010 Oct; 10(20):2814-7. PubMed ID: 20721367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Post-Etch Microstructures on the Optical Transmittance of Silica Ridge Waveguides.
    Wright JG; Schmidt H; Hawkins AR
    J Lightwave Technol; 2020 Nov; 38(22):6280-6285. PubMed ID: 33776196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor.
    Hu J; Tarasov V; Agarwal A; Kimerling L; Carlie N; Petit L; Richardson K
    Opt Express; 2007 Mar; 15(5):2307-14. PubMed ID: 19532465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.