These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18364998)

  • 1. Seeing 'where' through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution.
    Proulx MJ; Stoerig P; Ludowig E; Knoll I
    PLoS One; 2008 Mar; 3(3):e1840. PubMed ID: 18364998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-to-sound conversion: experience-induced plasticity in auditory cortex of blindfolded adults.
    Pollok B; Schnitzler I; Stoerig P; Mierdorf T; Schnitzler A
    Exp Brain Res; 2005 Nov; 167(2):287-91. PubMed ID: 16132971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Other ways of seeing: From behavior to neural mechanisms in the online "visual" control of action with sensory substitution.
    Proulx MJ; Gwinnutt J; Dell'Erba S; Levy-Tzedek S; de Sousa AA; Brown DJ
    Restor Neurol Neurosci; 2016; 34(1):29-44. PubMed ID: 26599473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeing with sound? exploring different characteristics of a visual-to-auditory sensory substitution device.
    Brown D; Macpherson T; Ward J
    Perception; 2011; 40(9):1120-35. PubMed ID: 22208131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of visual deprivation and experience on the performance of sensory substitution devices.
    Stronks HC; Nau AC; Ibbotson MR; Barnes N
    Brain Res; 2015 Oct; 1624():140-152. PubMed ID: 26183014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in occipital cortex activity in early blind humans using a sensory substitution device.
    De Volder AG; Catalan-Ahumada M; Robert A; Bol A; Labar D; Coppens A; Michel C; Veraart C
    Brain Res; 1999 Apr; 826(1):128-34. PubMed ID: 10216204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occipital activation by pattern recognition in the early blind using auditory substitution for vision.
    Arno P; De Volder AG; Vanlierde A; Wanet-Defalque MC; Streel E; Robert A; Sanabria-Bohórquez S; Veraart C
    Neuroimage; 2001 Apr; 13(4):632-45. PubMed ID: 11305892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceiving space and optical cues via a visuo-tactile sensory substitution system: a methodological approach for training of blind subjects for navigation.
    Segond H; Weiss D; Kawalec M; Sampaio E
    Perception; 2013; 42(5):508-28. PubMed ID: 23964377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. More accurate sound localization induced by short-term light deprivation.
    Lewald J
    Neuropsychologia; 2007 Mar; 45(6):1215-22. PubMed ID: 17113113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Braille character discrimination in blindfolded human subjects.
    Kauffman T; Théoret H; Pascual-Leone A
    Neuroreport; 2002 Apr; 13(5):571-4. PubMed ID: 11973448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-down influence on the visual cortex of the blind during sensory substitution.
    Murphy MC; Nau AC; Fisher C; Kim SG; Schuman JS; Chan KC
    Neuroimage; 2016 Jan; 125():932-940. PubMed ID: 26584776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of occipital cortex during sensory substitution training linked to subjective experience of seeing in people with blindness.
    Ortiz T; Poch J; Santos JM; Requena C; Martínez AM; Ortiz-Terán L; Turrero A; Barcia J; Nogales R; Calvo A; Martínez JM; Córdoba JL; Pascual-Leone A
    PLoS One; 2011; 6(8):e23264. PubMed ID: 21853098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic synaesthesia and sensory substitution.
    Proulx MJ
    Conscious Cogn; 2010 Mar; 19(1):501-3. PubMed ID: 20056449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-modal correspondence enhances elevation localization in visual-to-auditory sensory substitution.
    Bordeau C; Scalvini F; Migniot C; Dubois J; Ambard M
    Front Psychol; 2023; 14():1079998. PubMed ID: 36777233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.
    Kolarik AJ; Scarfe AC; Moore BC; Pardhan S
    PLoS One; 2017; 12(4):e0175750. PubMed ID: 28407000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisensory perceptual learning and sensory substitution.
    Proulx MJ; Brown DJ; Pasqualotto A; Meijer P
    Neurosci Biobehav Rev; 2014 Apr; 41():16-25. PubMed ID: 23220697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory coding of visual patterns for the blind.
    Arno P; Capelle C; Wanet-Defalque MC; Catalan-Ahumada M; Veraart C
    Perception; 1999; 28(8):1013-29. PubMed ID: 10664751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision substitution and depth perception: early blind subjects experience visual perspective through their ears.
    Renier L; De Volder AG
    Disabil Rehabil Assist Technol; 2010 May; 5(3):175-83. PubMed ID: 20214472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigation aid for blind persons by visual-to-auditory sensory substitution: A pilot study.
    Neugebauer A; Rifai K; Getzlaff M; Wahl S
    PLoS One; 2020; 15(8):e0237344. PubMed ID: 32818953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.
    Ptito M; Fumal A; de Noordhout AM; Schoenen J; Gjedde A; Kupers R
    Exp Brain Res; 2008 Jan; 184(2):193-200. PubMed ID: 17717652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.