These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 18365247)
1. Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Braidot E; Petrussa E; Bertolini A; Peresson C; Ermacora P; Loi N; Terdoslavich M; Passamonti S; Macrì F; Vianello A Planta; 2008 Jun; 228(1):203-13. PubMed ID: 18365247 [TBL] [Abstract][Full Text] [Related]
2. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening. Bertolini A; Peresson C; Petrussa E; Braidot E; Passamonti S; Macrì F; Vianello A J Exp Bot; 2009; 60(13):3861-71. PubMed ID: 19596699 [TBL] [Abstract][Full Text] [Related]
3. Immunohistochemical localisation of a putative flavonoid transporter in grape berries. Petrussa E; Braidot E; Zancani M; Peresson C; Bertolini A; Patui S; Casolo V; Passamonti S; Macrì F; Vianello A Methods Mol Biol; 2010; 643():291-306. PubMed ID: 20552459 [TBL] [Abstract][Full Text] [Related]
4. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. Martínez-Esteso MJ; Vilella-Antón MT; Pedreño MÁ; Valero ML; Bru-Martínez R BMC Plant Biol; 2013 Oct; 13():167. PubMed ID: 24152288 [TBL] [Abstract][Full Text] [Related]
5. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. De Angeli A; Baetz U; Francisco R; Zhang J; Chaves MM; Regalado A Planta; 2013 Aug; 238(2):283-91. PubMed ID: 23645258 [TBL] [Abstract][Full Text] [Related]
6. Plant flavonoids--biosynthesis, transport and involvement in stress responses. Petrussa E; Braidot E; Zancani M; Peresson C; Bertolini A; Patui S; Vianello A Int J Mol Sci; 2013 Jul; 14(7):14950-73. PubMed ID: 23867610 [TBL] [Abstract][Full Text] [Related]
7. Electrogenic bromosulfalein transport in isolated membrane vesicles: implementation in both animal and plant preparations for the study of flavonoid transporters. Passamonti S; Tramer F; Petrussa E; Braidot E; Vianello A Methods Mol Biol; 2010; 643():307-35. PubMed ID: 20552460 [TBL] [Abstract][Full Text] [Related]
8. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. Castellarin SD; Di Gaspero G; Marconi R; Nonis A; Peterlunger E; Paillard S; Adam-Blondon AF; Testolin R BMC Genomics; 2006 Jan; 7():12. PubMed ID: 16433923 [TBL] [Abstract][Full Text] [Related]
9. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries. Regalado A; Pierri CL; Bitetto M; Laera VL; Pimentel C; Francisco R; Passarinho J; Chaves MM; Agrimi G Planta; 2013 Mar; 237(3):693-703. PubMed ID: 23096487 [TBL] [Abstract][Full Text] [Related]
10. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Castellarin SD; Matthews MA; Di Gaspero G; Gambetta GA Planta; 2007 Dec; 227(1):101-12. PubMed ID: 17694320 [TBL] [Abstract][Full Text] [Related]
11. Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase. Passamonti S; Cocolo A; Braidot E; Petrussa E; Peresson C; Medic N; Macri F; Vianello A FEBS J; 2005 Jul; 272(13):3282-96. PubMed ID: 15978035 [TBL] [Abstract][Full Text] [Related]
12. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
13. Localization of stilbene synthase in Vitis vinifera L. during berry development. Fornara V; Onelli E; Sparvoli F; Rossoni M; Aina R; Marino G; Citterio S Protoplasma; 2008; 233(1-2):83-93. PubMed ID: 18615235 [TBL] [Abstract][Full Text] [Related]
14. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
15. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M; Matthews M; Shackel K J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917 [TBL] [Abstract][Full Text] [Related]
16. Expression and in situ localization of two major PR proteins of grapevine berries during development and after UV-C exposition. Colas S; Afoufa-Bastien D; Jacquens L; Clément C; Baillieul F; Mazeyrat-Gourbeyre F; Monti-Dedieu L PLoS One; 2012; 7(8):e43681. PubMed ID: 22937077 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Analysis of Root Restriction Effects on Phenolic Metabolites during Grape Berry Development and Ripening. Leng F; Cao J; Ge Z; Wang Y; Zhao C; Wang S; Li X; Zhang Y; Sun C J Agric Food Chem; 2020 Aug; 68(34):9090-9099. PubMed ID: 32806110 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Giordano D; Provenzano S; Ferrandino A; Vitali M; Pagliarani C; Roman F; Cardinale F; Castellarin SD; Schubert A Plant Physiol Biochem; 2016 Apr; 101():23-32. PubMed ID: 26851572 [TBL] [Abstract][Full Text] [Related]
19. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Shi P; Song C; Chen H; Duan B; Zhang Z; Meng J Food Chem; 2018 Jul; 253():164-170. PubMed ID: 29502817 [TBL] [Abstract][Full Text] [Related]
20. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate. Yu R; Cook MG; Yacco RS; Watrelot AA; Gambetta G; Kennedy JA; Kurtural SK J Agric Food Chem; 2016 Nov; 64(43):8118-8127. PubMed ID: 27728974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]