BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18365485)

  • 1. [The role of vagal control in the action of propranolol on the chronotropic cardiac function].
    Kaverina NV; Lyskovtsev VV; Popova EP; Lebedeva MA
    Eksp Klin Farmakol; 2008; 71(1):36-8. PubMed ID: 18365485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic beta-blockers on human cardiac vagal control.
    Vaile JC; Fletcher J; Al-Ani M; Ross HF; Littler WA; Coote JH; Townend JN
    Clin Sci (Lond); 1999 Nov; 97(5):585-93; discussion 609-10. PubMed ID: 10545309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis.
    Schwerte T; Prem C; Mairösl A; Pelster B
    J Exp Biol; 2006 Mar; 209(Pt 6):1093-100. PubMed ID: 16513936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal nerve stimulation increases right ventricular contraction and relaxation and heart rate.
    Henning RJ; Feliciano L; Coers CM
    Cardiovasc Res; 1996 Nov; 32(5):846-53. PubMed ID: 8944815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of vagus nerve stimulation on the rat heart rate during blocking of beta-adrenergic receptors with obzidan].
    Zefirov TL; Sviatova NV
    Biull Eksp Biol Med; 1998 Dec; 126(12):612-4. PubMed ID: 9934498
    [No Abstract]   [Full Text] [Related]  

  • 6. Parasympathetic regulation of heart rate in rats after 5/6 nephrectomy is impaired despite functionally intact cardiac vagal innervation.
    Kuncová J; Svíglerová J; Kummer W; Rajdl D; Chottová-Dvoráková M; Tonar Z; Nalos L; Stengl M
    Nephrol Dial Transplant; 2009 Aug; 24(8):2362-70. PubMed ID: 19321759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflex inhibition of heart rate and efferent cardiac sympathetic outflow induced by colorectal distension in anesthetized rats.
    Li WM; Suzuki A
    J Physiol Sci; 2006 Apr; 56(2):187-90. PubMed ID: 16839450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preserving cardiac output with beta-adrenergic receptor blockade and inhibiting the Bezold-Jarisch reflex during resuscitation from hemorrhage.
    Wisbach G; Tobias S; Woodman R; Spalding A; Lockette W
    J Trauma; 2007 Jul; 63(1):26-32. PubMed ID: 17622865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of aerobic physical training on cardiac autonomic control of rats submitted to ovariectomy.
    Tezini GC; Silveira LC; Villa-Clé PG; Jacinto CP; Di Sacco TH; Souza HC
    Menopause; 2009; 16(1):110-6. PubMed ID: 18978639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic dose-dependent modulation of cardiac parasympathetic activity by moxonidine, an imidazoline I1-receptor agonist.
    Turcani M
    J Cardiovasc Pharmacol; 2008 Dec; 52(6):524-35. PubMed ID: 19034032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a respiratory component, similar to mammalian respiratory sinus arrhythmia, in the heart rate variability signal from the rattlesnake, Crotalus durissus terrificus.
    Campbell HA; Leite CA; Wang T; Skals M; Abe AS; Egginton S; Rantin FT; Bishop CM; Taylor EW
    J Exp Biol; 2006 Jul; 209(Pt 14):2628-36. PubMed ID: 16809454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular effects of tyramine: adrenergic and cholinergic interactions.
    Khwanchuea R; Mulvany MJ; Jansakul C
    Eur J Pharmacol; 2008 Jan; 579(1-3):308-17. PubMed ID: 18036584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic control of short-term heart rate variability and its pharmacological modulation.
    Elghozi JL; Julien C
    Fundam Clin Pharmacol; 2007 Aug; 21(4):337-47. PubMed ID: 17635171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A comparative evaluation of the cardiotropic effects of neurotensin and adrenaline in cats].
    Osadchiĭ OE; Pokrovskiĭ VM; Kompaniets OG; Kurzanov AN
    Fiziol Zh Im I M Sechenova; 1996 Jan; 82(1):104-10. PubMed ID: 8829668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal effects of lipophilic and hydrophilic beta-adrenergic blocking drugs.
    Eckberg DL
    Clin Sci (Lond); 1999 Nov; 97(5):609-10. PubMed ID: 10545312
    [No Abstract]   [Full Text] [Related]  

  • 16. Ivabradine augments high-frequency dynamic gain of the heart rate response to low- and moderate-intensity vagal nerve stimulation under β-blockade.
    Kawada T; Yamamoto H; Uemura K; Hayama Y; Nishikawa T; Zheng C; Li M; Miyamoto T; Sugimachi M
    Am J Physiol Heart Circ Physiol; 2021 Jun; 320(6):H2201-H2210. PubMed ID: 33891515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The specific nature of vagus influences on the heart rhythm under the action of humoral regulators].
    Osadchiĭ OE; Pokrovskiĭ VM; Sheĭkh-zade IuR; Balagurov EM
    Fiziol Zh SSSR Im I M Sechenova; 1992 Oct; 78(10):70-6. PubMed ID: 1363841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of respiratory interval on vagal modulation of heart rate.
    Hayano J; Mukai S; Sakakibara M; Okada A; Takata K; Fujinami T
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H33-40. PubMed ID: 7914066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism.
    Miyamoto T; Kawada T; Yanagiya Y; Inagaki M; Takaki H; Sugimachi M; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H860-5. PubMed ID: 15016630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The chronotropic effect of maximal stress on the heart and its regulation].
    Pshennikova MG
    Fiziol Zh SSSR Im I M Sechenova; 1976 Apr; 62(4):566-72. PubMed ID: 6345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.