BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18365702)

  • 1. Rapid electrical lysis of bacterial cells in a microfluidic device.
    Wang HY; Banada PP; Bhunia AK; Lu C
    Methods Mol Biol; 2007; 385():23-35. PubMed ID: 18365702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and High-Throughput Electromechanical Lysis of Bacterial Pathogens Using Ion Concentration Polarization.
    Kim M; Wu L; Kim B; Hung DT; Han J
    Anal Chem; 2018 Jan; 90(1):872-880. PubMed ID: 29193960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic platform for rapid screening of bacterial cell lysis.
    Fradique R; Azevedo AM; Chu V; Conde JP; Aires-Barros MR
    J Chromatogr A; 2020 Jan; 1610():460539. PubMed ID: 31543341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless induction heating in a microfluidic device for cell lysis.
    Baek SK; Min J; Park JH
    Lab Chip; 2010 Apr; 10(7):909-17. PubMed ID: 20379569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample preparation module for bacterial lysis and isolation of DNA from human urine.
    Kulinski MD; Mahalanabis M; Gillers S; Zhang JY; Singh S; Klapperich CM
    Biomed Microdevices; 2009 Jun; 11(3):671-678. PubMed ID: 19130239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-voltage electrical cell lysis using a microfluidic device.
    Wei XY; Li JH; Wang L; Yang F
    Biomed Microdevices; 2019 Feb; 21(1):22. PubMed ID: 30790126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonolysis of Escherichia coli and Pichia pastoris in microfluidics.
    Tandiono T; Ow DS; Driessen L; Chin CS; Klaseboer E; Choo AB; Ohl SW; Ohl CD
    Lab Chip; 2012 Feb; 12(4):780-6. PubMed ID: 22183135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid quantification of bacterial cells in potable water using a simplified microfluidic device.
    Sakamoto C; Yamaguchi N; Yamada M; Nagase H; Seki M; Nasu M
    J Microbiol Methods; 2007 Mar; 68(3):643-7. PubMed ID: 17182141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels.
    Lu H; Mutafopulos K; Heyman JA; Spink P; Shen L; Wang C; Franke T; Weitz DA
    Lab Chip; 2019 Dec; 19(24):4064-4070. PubMed ID: 31690904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes.
    Morshed BI; Shams M; Mussivand T
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):871-82. PubMed ID: 24557688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip.
    Mahalanabis M; Al-Muayad H; Kulinski MD; Altman D; Klapperich CM
    Lab Chip; 2009 Oct; 9(19):2811-7. PubMed ID: 19967118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossing microfluidic streamlines to lyse, label and wash cells.
    Morton KJ; Loutherback K; Inglis DW; Tsui OK; Sturm JC; Chou SY; Austin RH
    Lab Chip; 2008 Sep; 8(9):1448-53. PubMed ID: 18818798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip lysis of mammalian cells through a handheld corona device.
    Escobedo C; Bürgel SC; Kemmerling S; Sauter N; Braun T; Hierlemann A
    Lab Chip; 2015 Jul; 15(14):2990-7. PubMed ID: 26055165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counting bacteria on a microfluidic chip.
    Song Y; Zhang H; Chon CH; Chen S; Pan X; Li D
    Anal Chim Acta; 2010 Nov; 681(1-2):82-6. PubMed ID: 21035606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags.
    Meagher RJ; Light YK; Singh AK
    Lab Chip; 2008 Apr; 8(4):527-32. PubMed ID: 18369506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chemostat for measuring single cell dynamics in bacteria.
    Long Z; Nugent E; Javer A; Cicuta P; Sclavi B; Cosentino Lagomarsino M; Dorfman KD
    Lab Chip; 2013 Mar; 13(5):947-54. PubMed ID: 23334753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.