These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18365702)

  • 21. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
    Moolman MC; Huang Z; Krishnan ST; Kerssemakers JW; Dekker NH
    J Nanobiotechnology; 2013 Apr; 11():12. PubMed ID: 23575419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated microfluidic cell culture and lysis on a chip.
    Nevill JT; Cooper R; Dueck M; Breslauer DN; Lee LP
    Lab Chip; 2007 Dec; 7(12):1689-95. PubMed ID: 18030388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional, sharp-tipped electrodes concentrate applied fields to enable direct electrical release of intact biomarkers from cells.
    Poudineh M; Mohamadi RM; Sage A; Mahmoudian L; Sargent EH; Kelley SO
    Lab Chip; 2014 May; 14(10):1785-90. PubMed ID: 24695906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.
    Chen X; Cui DF; Liu CC
    Electrophoresis; 2008 May; 29(9):1844-51. PubMed ID: 18393339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.
    Si G; Yang W; Bi S; Luo C; Ouyang Q
    Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An automatic microturbidostat for bacterial culture at constant density.
    Luo X; Shen K; Luo C; Ji H; Ouyang Q; Chen Y
    Biomed Microdevices; 2010 Jun; 12(3):499-503. PubMed ID: 20177791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flow cytometry-based submicron-sized bacterial detection system using a movable virtual wall.
    Choi H; Jeon CS; Hwang I; Ko J; Lee S; Choo J; Boo JH; Kim HC; Chung TD
    Lab Chip; 2014 Jul; 14(13):2327-33. PubMed ID: 24828279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joule Heating-Induced Dispersion in Open Microfluidic Electrophoretic Cytometry.
    Vlassakis J; Herr AE
    Anal Chem; 2017 Dec; 89(23):12787-12796. PubMed ID: 29110464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX; Yin XF
    J Chromatogr A; 2011 Feb; 1218(5):726-32. PubMed ID: 21185567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined microfluidic-micromagnetic separation of living cells in continuous flow.
    Xia N; Hunt TP; Mayers BT; Alsberg E; Whitesides GM; Westervelt RM; Ingber DE
    Biomed Microdevices; 2006 Dec; 8(4):299-308. PubMed ID: 17003962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami.
    Govindarajan AV; Ramachandran S; Vigil GD; Yager P; Böhringer KF
    Lab Chip; 2012 Jan; 12(1):174-81. PubMed ID: 22068336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-chip transformation of bacteria.
    Nagamine K; Onodera S; Torisawa YS; Yasukawa T; Shiku H; Matsue T
    Anal Chem; 2005 Jul; 77(13):4278-81. PubMed ID: 15987137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device.
    Zhu T; Pei Z; Huang J; Xiong C; Shi S; Fang J
    Lab Chip; 2010 Jun; 10(12):1557-60. PubMed ID: 20517558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic viability of Escherichia coli trapped by dielectrophoresis in microfluidics.
    Donato SS; Chu V; Prazeres DM; Conde JP
    Electrophoresis; 2013 Feb; 34(4):575-82. PubMed ID: 23175163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of bacterial cells based on autofluorescence on a microfluidic platform.
    Bao N; Jagadeesan B; Bhunia AK; Yao Y; Lu C
    J Chromatogr A; 2008 Feb; 1181(1-2):153-8. PubMed ID: 18187141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting.
    Yamaguchi N; Torii M; Uebayashi Y; Nasu M
    Appl Environ Microbiol; 2011 Feb; 77(4):1536-9. PubMed ID: 21169431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
    Kim J; Hong JW; Kim DP; Shin JH; Park I
    Lab Chip; 2012 Aug; 12(16):2914-21. PubMed ID: 22722645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic device for efficient airborne bacteria capture and enrichment.
    Jing W; Zhao W; Liu S; Li L; Tsai CT; Fan X; Wu W; Li J; Yang X; Sui G
    Anal Chem; 2013 May; 85(10):5255-62. PubMed ID: 23590462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A light-controlled cell lysis system in bacteria.
    Wang G; Lu X; Zhu Y; Zhang W; Liu J; Wu Y; Yu L; Sun D; Cheng F
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):429-432. PubMed ID: 29737436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.