These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 18365703)
41. ATP Sensing Paper with Smartphone Bioluminescence-Based Detection. Calabretta MM; Alvarez-Diduk R; Michelini E; Merkoçi A Methods Mol Biol; 2022; 2525():297-307. PubMed ID: 35836078 [TBL] [Abstract][Full Text] [Related]
42. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection. Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870 [TBL] [Abstract][Full Text] [Related]
43. Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations. Hashimoto M; Hupert ML; Murphy MC; Soper SA; Cheng YW; Barany F Anal Chem; 2005 May; 77(10):3243-55. PubMed ID: 15889915 [TBL] [Abstract][Full Text] [Related]
44. Microfluidic Device to Quantify the Behavior of Therapeutic Bacteria in Three-Dimensional Tumor Tissue. Brackett EL; Swofford CA; Forbes NS Methods Mol Biol; 2016; 1409():35-48. PubMed ID: 26846800 [TBL] [Abstract][Full Text] [Related]
45. A miniaturized high-voltage integrated power supply for portable microfluidic applications. Erickson D; Sinton D; Li D Lab Chip; 2004 Apr; 4(2):87-90. PubMed ID: 15052345 [TBL] [Abstract][Full Text] [Related]
46. High-grade optical polydimethylsiloxane for microfluidic applications. Lovchik RD; Wolf H; Delamarche E Biomed Microdevices; 2011 Dec; 13(6):1027-32. PubMed ID: 21786042 [TBL] [Abstract][Full Text] [Related]
47. A simple method to determine the surface charge in microfluidic channels. Mampallil D; van den Ende D; Mugele F Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966 [TBL] [Abstract][Full Text] [Related]
48. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances. Roh C; Lee J; Kang C Molecules; 2016 Jun; 21(6):. PubMed ID: 27322239 [TBL] [Abstract][Full Text] [Related]
49. The deformation of flexible PDMS microchannels under a pressure driven flow. Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304 [TBL] [Abstract][Full Text] [Related]
50. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels. Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365 [TBL] [Abstract][Full Text] [Related]
51. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth. Lim H; Moon S Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614 [TBL] [Abstract][Full Text] [Related]
52. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests. Akagi J; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D Curr Protoc Cytom; 2014 Jan; 67():9.44.1-9.44.16. PubMed ID: 24510773 [TBL] [Abstract][Full Text] [Related]
53. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips. Yu L; Huang H; Dong X; Wu D; Qin J; Lin B Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590 [TBL] [Abstract][Full Text] [Related]