These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 18366011)
1. Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis. Lewis A; Steadman R; Manley P; Craig K; de la Motte C; Hascall V; Phillips AO Histol Histopathol; 2008 Jun; 23(6):731-9. PubMed ID: 18366011 [TBL] [Abstract][Full Text] [Related]
2. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Klessens CQF; Zandbergen M; Wolterbeek R; Bruijn JA; Rabelink TJ; Bajema IM; IJpelaar DHT Nephrol Dial Transplant; 2017 Aug; 32(8):1322-1329. PubMed ID: 27416772 [TBL] [Abstract][Full Text] [Related]
3. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus. Yonemoto S; Machiguchi T; Nomura K; Minakata T; Nanno M; Yoshida H Clin Exp Nephrol; 2006 Sep; 10(3):186-92. PubMed ID: 17009076 [TBL] [Abstract][Full Text] [Related]
4. Expression and cellular distribution of TLR4, MyD88, and NF-κB in diabetic renal tubulointerstitial fibrosis, in vitro and in vivo. Liu P; Li F; Qiu M; He L Diabetes Res Clin Pract; 2014 Aug; 105(2):206-16. PubMed ID: 24894085 [TBL] [Abstract][Full Text] [Related]
5. Macrophage accumulation in human progressive diabetic nephropathy. Nguyen D; Ping F; Mu W; Hill P; Atkins RC; Chadban SJ Nephrology (Carlton); 2006 Jun; 11(3):226-31. PubMed ID: 16756636 [TBL] [Abstract][Full Text] [Related]
7. Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Phillips AO; Steadman R Histol Histopathol; 2002 Jan; 17(1):247-52. PubMed ID: 11813875 [TBL] [Abstract][Full Text] [Related]
8. Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats. Nakatsuji S; Yamate J; Sakuma S Vet Pathol; 1998 Sep; 35(5):352-60. PubMed ID: 9754540 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan. Stridh S; Palm F; Takahashi T; Ikegami-Kawai M; Hansell P Ups J Med Sci; 2015; 120(4):233-40. PubMed ID: 26175092 [TBL] [Abstract][Full Text] [Related]
10. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Sakai N; Wada T; Furuichi K; Iwata Y; Yoshimoto K; Kitagawa K; Kokubo S; Kobayashi M; Hara A; Yamahana J; Okumura T; Takasawa K; Takeda S; Yoshimura M; Kida H; Yokoyama H Am J Kidney Dis; 2005 Jan; 45(1):54-65. PubMed ID: 15696444 [TBL] [Abstract][Full Text] [Related]
11. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Wang SN; LaPage J; Hirschberg R Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of the proliferation marker Ki-67 in renal biopsies: correlation to clinical findings. Nabokov A; Waldherr R; Ritz E Am J Kidney Dis; 1997 Jul; 30(1):87-97. PubMed ID: 9214406 [TBL] [Abstract][Full Text] [Related]
13. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Chow F; Ozols E; Nikolic-Paterson DJ; Atkins RC; Tesch GH Kidney Int; 2004 Jan; 65(1):116-28. PubMed ID: 14675042 [TBL] [Abstract][Full Text] [Related]
14. Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy. Razzaque MS; Kumatori A; Harada T; Taguchi T Nephron; 1998 Dec; 80(4):434-43. PubMed ID: 9832643 [TBL] [Abstract][Full Text] [Related]
15. [Phenotypic characteristics of infiltrated inflammatory cells, renal tubular epithelial cells and interstitial cells and their possible roles in the outcome of human drug-associated interstitial nephritis]. Yang L; Li X; Zheng X Zhonghua Yi Xue Za Zhi; 2001 Jan; 81(2):73-7. PubMed ID: 11798853 [TBL] [Abstract][Full Text] [Related]
16. Mast cells and type VIII collagen in human diabetic nephropathy. Rüger BM; Hasan Q; Greenhill NS; Davis PF; Dunbar PR; Neale TJ Diabetologia; 1996 Oct; 39(10):1215-22. PubMed ID: 8897010 [TBL] [Abstract][Full Text] [Related]
17. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Tiainen S; Tumelius R; Rilla K; Hämäläinen K; Tammi M; Tammi R; Kosma VM; Oikari S; Auvinen P Histopathology; 2015 May; 66(6):873-83. PubMed ID: 25387851 [TBL] [Abstract][Full Text] [Related]
18. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Wada T; Furuichi K; Sakai N; Iwata Y; Yoshimoto K; Shimizu M; Takeda SI; Takasawa K; Yoshimura M; Kida H; Kobayashi KI; Mukaida N; Naito T; Matsushima K; Yokoyama H Kidney Int; 2000 Oct; 58(4):1492-9. PubMed ID: 11012884 [TBL] [Abstract][Full Text] [Related]
19. A morphometric insight into glomerular and interstitial lesions in acutely rejected renal allografts. Danilewicz M; Wagrowska-Danilewicz M Pol J Pathol; 2003; 54(3):171-7. PubMed ID: 14703283 [TBL] [Abstract][Full Text] [Related]
20. Clinical and pathological predictors of estimated GFR decline in patients with type 2 diabetes and overt proteinuric diabetic nephropathy. Mise K; Hoshino J; Ueno T; Hazue R; Sumida K; Hiramatsu R; Hasegawa E; Yamanouchi M; Hayami N; Suwabe T; Sawa N; Fujii T; Hara S; Ohashi K; Takaichi K; Ubara Y Diabetes Metab Res Rev; 2015 Sep; 31(6):572-81. PubMed ID: 25533683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]